Leveraging Artificial Intelligence and Modulation of Oxidative Stressors to Enhance Healthspan and Radical Longevity
Abstract
1. Emerging Applications of AI in Characterization of Human Aging and Countermeasures to Disease
1.1. Healthspan, Longevity, and Quality-of-Life
1.2. Public Availability and Utilization of AI Platforms Needed for Simplicity of Operation
1.3. Integration of Quantum Computing into AI Platforms
1.4. Limitations on Current AI Use
1.5. Hypothesis-Based Approach for Use of AI
1.6. Representative Strategy for Using an AI Platform to Solve a Complex Problem
1.7. Oxidative Stress, “Inflammaging”, and Antioxidant Countermeasures
1.8. Inflammatory Damage to Cardiovascular Tissue, Death from “Old Age”, and Progeria
1.9. Hemolytic Diseases: A Representative Research Challenge for AI
1.10. Strategies for Use of AI in Design of Research on Hemolytic and Other Diseases
1.11. Integration of and Distinctions Between Medical Treatments and Healthspan Enhancement
2. AI Capabilities and Applications in the Development of Research Strategies for Healthy Aging
2.1. Brief Overview of AI Capabilities
2.2. Significance of Integrating AI into Longevity Research
2.3. AI in Biomarker Discovery and Aging Diagnostics
2.3.1. Machine Learning and Deep Learning in Identifying Aging Biomarkers
2.3.2. AI-Driven Diagnostic Tools Predicting Biological Age
2.3.3. Case Studies of Successful Biomarker Identification Using AI
2.4. AI in Drug Discovery and Therapeutics
2.4.1. Accelerated Drug Discovery Processes
2.4.2. AI-Driven Simulation and Drug Efficacy Modeling
2.4.3. Personalized Medicine Using AI Analytics
2.4.4. Examples of Successful AI-Accelerated Longevity Therapeutics
2.5. AI and Genomics in Longevity Research
2.5.1. Analysis and Interpretation of Genomic Data Using AI
2.5.2. AI-Powered Gene Editing Technologies
2.5.3. Predictive Genomics for Personalized Longevity Strategies
2.5.4. AI-Driven Design and Personalization of Gene and Cell Therapies
2.6. AI-Enhanced Clinical Trials and Longevity Studies
2.6.1. AI in Patient Recruitment, Monitoring, and Analysis
2.6.2. Real-Time Data Analytics for Efficient Longevity Research Outcomes
2.7. Robotics, Automation, and AI in Elderly Care
2.7.1. AI-Enhanced Robotics Assisting Elderly Populations
2.7.2. Automation in Monitoring and Proactive Health Interventions
2.7.3. Ethical Implications and Challenges in Robotic Elderly Care
2.8. AI for Lifestyle and Behavioral Intervention
2.8.1. Personalized Lifestyle Recommendations Driven by AI
2.8.2. Behavioral Analysis Using AI to Promote Healthy Aging
2.8.3. Potential AI-Augmented Countermeasures to Social Isolation and Loneliness
2.8.4. Examples of Successful AI-Driven Lifestyle Intervention Platforms
2.9. Multi-Threat Medical Countermeasures (MTMC): Use of AI in Force Health Protection and Care for Victims of War
2.9.1. Chronic Inflammatory Disorders: A Consequence of Modern Warfare
2.9.2. MTMC and Aging: Concept and Significance of Multi-Threat Medical Countermeasures (MTMC) in Aging
2.9.3. Role of AI in Optimizing MTMC Regimens
2.9.4. AI-Enhanced MTMC Interventions: Targeting Chronic Inflammation and Metabolic Health
2.9.5. Case Studies and Evidence of AI-Optimized MTMC Success
2.9.6. Future Directions and Clinical Implications
3. Discussion
3.1. Ethical and Societal Considerations in AI-Driven Longevity Research
3.2. Challenges, Limitations, and Future Directions
3.3. Strategic Recommendations for Integrating AI into Longevity Practices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking Aging to Chronic Disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the Global Challenges of Ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef]
- de Magalhães, J.P.; Stevens, M.; Thornton, D. The Business of Anti-Aging Science. Trends Biotechnol. 2017, 35, 1062–1073. [Google Scholar] [CrossRef]
- Sinclair, D.A.; LaPlante, M.D.; Delphia, C. Lifespan: Why We Age—And Why We Don’t Have To; Simon and Schuster: New York, NY, USA, 2019; p. 406. [Google Scholar]
- Michael, A.N.; Isaac, L.C. Quantum Computation and Quantum Information 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010; ISBN 9781107002173. [Google Scholar]
- Mohamed, A.A.; Sargent, E.; Moriconi, C.; Williams, C.; Shah, S.M.; Lucke-Wold, B. Quantum Computing in the Realm of Neurosurgery. World Neurosurg. 2025, 193, 8–14. [Google Scholar] [CrossRef]
- Jeyaraman, N.; Jeyaraman, M.; Yadav, S.; Ramasubramanian, S.; Balaji, S.; Jeyaraman, N.; Jeyaraman, M.; Yadav, S.; Ramasubramanian, S.; Balaji, S. Revolutionizing Healthcare: The Emerging Role of Quantum Computing in Enhancing Medical Technology and Treatment. Cureus 2024, 16. [Google Scholar] [CrossRef]
- Abavisani, M.; Faraji, S.; Ebadpour, N.; Karav, S.; Sahebkar, A. Beyond the Hayflick Limit: How Microbes Influence Cellular Aging. Ageing Res. Rev. 2025, 104, 102657. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Olivieri, F.; Moskalev, A.; Ivanchenko, M.; Santoro, A. Toward Precision Interventions and Metrics of Inflammaging. Nat. Aging 2025, 5, 1441–1454. [Google Scholar] [CrossRef]
- Rivas, F.; Poblete-Aro, C.; Pando, M.E.; Allel, M.J.; Fernandez, V.; Soto, A.; Nova, P.; Garcia-Diaz, D. Effects of Polyphenols in Aging and Neurodegeneration Associated with Oxidative Stress. Curr. Med. Chem. 2021, 29, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, W.P.; Sethi, J.K. TNF-α and Adipocyte Biology. FEBS Lett. 2008, 582, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, A.; Zarb, C.; Caruana, M.; Ostermeier, U.; Ghio, S.; Högen, T.; Schmidt, F.; Giese, A.; Vassallo, N. Mitochondrial Membrane Permeabilisation by Amyloid Aggregates and Protection by Polyphenols. Biochim. Et. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2532–2543. [Google Scholar] [CrossRef]
- Bunne, C.; Roohani, Y.; Rosen, Y.; Gupta, A.; Zhang, X.; Roed, M.; Alexandrov, T.; AlQuraishi, M.; Brennan, P.; Burkhardt, D.B.; et al. How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities. Cell 2024, 187, 7045–7063. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2023, 64, 109–122. [Google Scholar] [CrossRef]
- McClintock, D.; Gordon, L.B.; Djabali, K. Hutchinson–Gilford Progeria Mutant Lamin A Primarily Targets Human Vascular Cells as Detected by an Anti-Lamin A G608G Antibody. Proc. Natl. Acad. Sci. USA 2006, 103, 2154–2159. [Google Scholar] [CrossRef]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma Hemoglobin: A Novel Mechanism of Human Disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
- Eisa, M.S.; Mohamed, S.F.; Ibrahim, F.; Shariff, K.; Sadik, N.; Nashwan, A.; Yassin, M.A. Paroxysmal Nocturnal Hemoglobinuria with Glucose-6-Phosphate Dehydrogenase Deficiency: A Case Report and Review of the Literature. Case Rep. Oncol. 2020, 12, 838–844. [Google Scholar] [CrossRef]
- Belcher, J.D.; Nath, K.A.; Vercellotti, G.M. Vasculotoxic and Proinflammatory Effects of Plasma Heme: Cell Signaling and Cytoprotective Responses. Int. Sch. Res. Not. 2013, 2013, 831596. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Stenvinkel, P.; Scheiwe, R.; Steppan, S.; Bowry, S.; Castellano, G. The Janus-Faced Nature of Complement in Hemodialysis: Interplay between Complement, Inflammation, and Bioincompatibility Unveiling a Self-Amplifying Loop Contributing to Organ Damage. Front. Nephrol. 2024, 4, 1455321. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.M.; Song, W.; Zukor, H.; Hascalovici, J.R.; Zeligman, D. Heme Oxygenase-1 and Neurodegeneration: Expanding Frontiers of Engagement. J. Neurochem. 2009, 110, 469–485. [Google Scholar] [CrossRef]
- Mahmoud, F.F.; Al-Awadhi, A.M.; Haines, D.D. Amelioration of Human Osteoarthritis Symptoms with Topical ‘Biotherapeutics’: A Phase I Human Trial. Cell Stress. Chaperones 2015, 20, 267–276. [Google Scholar] [CrossRef]
- Haines, D.D.; Cowan, F.M.; Tosaki, A. Evolving Strategies for Use of Phytochemicals in Prevention and Long-Term Management of Cardiovascular Diseases (CVD). Int. J. Mol. Sci. 2024, 25, 6176. [Google Scholar] [CrossRef] [PubMed]
- Bak, I.; Czompa, A.; Csepanyi, E.; Juhasz, B.; Kalantari, H.; Najm, K.; Aghel, N.; Varga, B.; Haines, D.D.; Tosaki, A. Evaluation of Systemic and Dermal Toxicity and Dermal Photoprotection by Sour Cherry Kernels. Phytother. Res. 2011, 25, 1714–1720. [Google Scholar] [CrossRef]
- Pataki, T.; Bak, I.; Kovacs, P.; Bagchi, D.; Das, D.K.; Tosaki, A. Grape Seed Proanthocyanidins Improved Cardiac Recovery during Reperfusion after Ischemia in Isolated Rat Hearts. Am. J. Clin. Nutr. 2002, 75, 894–899. [Google Scholar] [CrossRef]
- Csiki, Z.; Papp-Bata, A.; Czompa, A.; Nagy, A.; Bak, I.; Lekli, I.; Javor, A.; Haines, D.D.; Balla, G.; Tosaki, A. Orally Delivered Sour Cherry Seed Extract (SCSE) Affects Cardiovascular and Hematological Parameters in Humans. Phytother. Res. 2015, 29, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Tosaki, A. ArrhythmoGenoPharmacoTherapy. Front. Pharmacol. 2020, 11, 497047. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA; Boston, MA, USA, 2022; ISBN 9780262369305. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Névéol, A.; Dalianis, H.; Velupillai, S.; Savova, G.; Zweigenbaum, P. Clinical Natural Language Processing in Languages Other than English: Opportunities and Challenges. J. Biomed. Semant. 2018, 9, 12. [Google Scholar] [CrossRef]
- Broadbent, E.; Stafford, R.; MacDonald, B. Acceptance of Healthcare Robots for the Older Population: Review and Future Directions. Int. J. Soc. Robot. 2009, 1, 319–330. [Google Scholar] [CrossRef]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Mamoshina, P.; Vanhaelen, Q.; Scheibye-Knudsen, M.; Moskalev, A.; Aliper, A. Artificial Intelligence for Aging and Longevity Research: Recent Advances and Perspectives. Ageing Res. Rev. 2019, 49, 49–66. [Google Scholar] [CrossRef]
- Topol, E.J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again; Hachette: London, UK, 2019; ISBN 9781541644632. [Google Scholar]
- Horvath, S.; Raj, K. DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Barardo, D.; Thornton, D.; Thoppil, H.; Walsh, M.; Sharifi, S.; Ferreira, S.; Anžič, A.; Fernandes, M.; Monteiro, P.; Grum, T.; et al. The DrugAge Database of Aging-Related Drugs. Aging Cell 2017, 16, 594–597. [Google Scholar] [CrossRef]
- Alyass, A.; Turcotte, M.; Meyre, D. From Big Data Analysis to Personalized Medicine for All: Challenges and Opportunities. BMC Med. Genom. 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Fabris, F.; de Magalhães, J.P.; Freitas, A.A. A Review of Supervised Machine Learning Applied to Ageing Research. Biogerontology 2017, 18, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Li, R.; Ma, C.; Mamoshina, P. Deep Biomarkers of Aging and Longevity: From Research to Applications. Aging 2019, 11, 10771–10780. [Google Scholar] [CrossRef]
- Horvath, S. DNA Methylation Age of Human Tissues and Cell Types. Genome Biol. 2013, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of Biological Aging in Young Adults. Proc. Natl. Acad. Sci. USA 2015, 112, E4104–E4110. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of Cardiovascular Risk Factors from Retinal Fundus Photographs via Deep Learning. Nat. Biomed. Eng. 2018, 2, 158–164. [Google Scholar] [CrossRef]
- Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A. Deep Biomarkers of Human Aging: Application of Deep Neural Networks to Biomarker Development. Aging 2016, 8, 1021–1030. [Google Scholar] [CrossRef]
- Mamoshina, P.; Kochetov, K.; Putin, E.; Cortese, F.; Aliper, A.; Lee, W.S.; Ahn, S.M.; Uhn, L.; Skjodt, N.; Kovalchuk, O.; et al. Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. J. Gerontol. Ser. A 2018, 73, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep Learning Enables Rapid Identification of Potent DDR1 Kinase Inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Luna, J.; Grisoni, F.; Weskamp, N.; Schneider, G. Artificial Intelligence in Drug Discovery: Recent Advances and Future Perspectives. Expert. Opin. Drug Discov. 2021, 16, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A. Towards Precision Medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Bischof, E.; Lee, K.F. Artificial Intelligence in Longevity Medicine. Nat. Aging 2021, 1, 5–7. [Google Scholar] [CrossRef]
- Pun, F.W.; Leung, G.H.D.; Leung, H.W.; Rice, J.; Schmauck-Medina, T.; Lautrup, S.; Long, X.; Liu, B.H.M.; Wong, C.W.; Ozerov, I.V.; et al. A Comprehensive AI-Driven Analysis of Large-Scale Omic Datasets Reveals Novel Dual-Purpose Targets for the Treatment of Cancer and Aging. Aging Cell 2023, 22, e14017. [Google Scholar] [CrossRef]
- Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018, 27, 529–547. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef]
- Zhou, J.; Troyanskaya, O.G. Predicting Effects of Noncoding Variants with Deep Learning-Based Sequence Model. Nat. Methods 2015, 12, 931–934. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed]
- Chuai, G.; Ma, H.; Yan, J.; Chen, M.; Hong, N.; Xue, D.; Zhou, C.; Zhu, C.; Chen, K.; Duan, B.; et al. DeepCRISPR: Optimized CRISPR Guide RNA Design by Deep Learning. Genome Biol. 2018, 19, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zischewski, J.; Fischer, R.; Bortesi, L. Detection of On-Target and off-Target Mutations Generated by CRISPR/Cas9 and Other Sequence-Specific Nucleases. Biotechnol. Adv. 2017, 35, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The Personal and Clinical Utility of Polygenic Risk Scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-Wide Polygenic Scores for Common Diseases Identify Individuals with Risk Equivalent to Monogenic Mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef]
- McHugh, D.; Durán, I.; Gil, J. Senescence as a Therapeutic Target in Cancer and Age-Related Diseases. Nat. Rev. Drug Discov. 2025, 24, 57–71. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.M.D.R.; Ramu Krishnan, N. Advancing Genome Editing with Artificial Intelligence: Opportunities, Challenges, and Future Directions. Front. Bioeng. Biotechnol. 2023, 11, 1335901. [Google Scholar] [CrossRef]
- Ogden, P.J.; Kelsic, E.D.; Sinai, S.; Church, G.M. Comprehensive AAV Capsid Fitness Landscape Reveals a Viral Gene and Enables Machine-Guided Design. Science 2019, 366, 1139–1143. [Google Scholar] [CrossRef]
- Ruetz, T.J.; Pogson, A.N.; Kashiwagi, C.M.; Gagnon, S.D.; Morton, B.; Sun, E.D.; Na, J.; Yeo, R.W.; Leeman, D.S.; Morgens, D.W.; et al. CRISPR–Cas9 Screens Reveal Regulators of Ageing in Neural Stem Cells. Nature 2024, 634, 1150–1159. [Google Scholar] [CrossRef]
- Orita, K.; Sawada, K.; Matsumoto, N.; Ikegaya, Y. Machine-Learning-Based Quality Control of Contractility of Cultured Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Biochem. Biophys. Res. Commun. 2020, 526, 751–755. [Google Scholar] [CrossRef]
- Guo, J.; Wang, P.; Sozen, B.; Qiu, H.; Zhu, Y.; Zhang, X.; Ming, J.; Zernicka-Goetz, M.; Na, J. Machine Learning-Assisted High-Content Analysis of Pluripotent Stem Cell-Derived Embryos in Vitro. Stem Cell Rep. 2021, 16, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Fernández-Maestre, I.; Chowdhury, S.; Ho, Y.J.; Nadella, S.; Graham, C.; Carrasco, S.E.; Nnuji-John, E.; Feucht, J.; Hinterleitner, C.; et al. Prophylactic and Long-Lasting Efficacy of Senolytic CAR T Cells against Age-Related Metabolic Dysfunction. Nat. Aging 2024, 4, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Feucht, J.; Leibold, J.; Ho, Y.J.; Zhu, C.; Alonso-Curbelo, D.; Mansilla-Soto, J.; Boyer, J.A.; Li, X.; Giavridis, T.; et al. Senolytic CAR T Cells Reverse Senescence-Associated Pathologies. Nature 2020, 583, 127–132. [Google Scholar] [CrossRef]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep Learning for Healthcare: Review, Opportunities and Challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Coravos, A.; Khozin, S.; Mandl, K.D. Developing and Adopting Safe and Effective Digital Biomarkers to Improve Patient Outcomes. NPJ Digit. Med. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Berry, S.M.; Connor, J.T.; Lewis, R.J. The Platform Trial: An Efficient Strategy for Evaluating Multiple Treatments. JAMA 2015, 313, 1619–1620. [Google Scholar] [CrossRef]
- Bothwell, L.E.; Avorn, J.; Khan, N.F.; Kesselheim, A.S. Adaptive Design Clinical Trials: A Review of the Literature and ClinicalTrials.Gov. BMJ Open 2018, 8, e018320. [Google Scholar] [CrossRef]
- Broekens, J.; Heerink, M.; Rosendal, H. Assistive Social Robots in Elderly Care: A Review. Gerontechnology 2024, 23, 94–103. [Google Scholar] [CrossRef]
- Wangmo, T.; Duong, V.; Felber, N.A.; Tian, Y.J.; Mihailov, E. No Playing around with Robots? Ambivalent Attitudes toward the Use of Paro in Elder Care. Nurs. Inq. 2024, 31, e12645. [Google Scholar] [CrossRef]
- Şimşek, T.T.; Yümin, E.T.; Sertel, M.; Öztürk, A.; Yümin, M. Assistive Device Usage in Elderly People and Evaluation of Mobility Level. Top. Geriatr. Rehabil. 2012, 28, 190–194. [Google Scholar] [CrossRef]
- Peek, S.T.M.; Wouters, E.J.M.; van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J.M. Factors Influencing Acceptance of Technology for Aging in Place: A Systematic Review. Int. J. Med. Inf. Inform. 2014, 83, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, A.; Sharkey, N. Granny and the Robots: Ethical Issues in Robot Care for the Elderly. Ethics Inf. Technol. 2012, 14, 27–40. [Google Scholar] [CrossRef]
- Vandemeulebroucke, T.; de Casterlé, B.D.; Gastmans, C. How Do Older Adults Experience and Perceive Socially Assistive Robots in Aged Care: A Systematic Review of Qualitative Evidence. Aging Ment. Health 2018, 22, 149–167. [Google Scholar] [CrossRef]
- Gambhir, S.S.; Ge, T.J.; Vermesh, O.; Spitler, R. Toward Achieving Precision Health. Sci. Transl. Med. 2018, 10, eaao3612. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and Health: Psychological, Behavioral, and Biological Determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef]
- Murdaca, G.; Paladin, F.; Casciaro, M.; Vicario, C.M.; Gangemi, S.; Martino, G. Neuro-Inflammaging and Psychopathological Distress. Biomedicines 2022, 10, 2133. [Google Scholar] [CrossRef]
- Albasheer, O.; Abdelwahab, S.I.; Zaino, M.R.; Altraifi, A.A.A.; Hakami, N.; El-Amin, E.I.; Alshehri, M.M.; Alghamdi, S.M.; Alqahtani, A.S.; Alenazi, A.M.; et al. The Impact of Social Isolation and Loneliness on Cardiovascular Disease Risk Factors: A Systematic Review, Meta-Analysis, and Bibliometric Investigation. Sci. Rep. 2024, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J.; Steptoe, A. Social Isolation: An Underappreciated Determinant of Physical Health. Curr. Opin. Psychol. 2022, 43, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Cacioppo, S.; Capitanio, J.P.; Cole, S.W. The Neuroendocrinology of Social Isolation. Annu. Rev. Psychol. 2015, 66, 733–767. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.Y.; Levin, Y.; Lahav, Y.; Uziel, O.; Abumock, H.; Solomon, Z. Perceived Social Support, Loneliness, and Later Life Telomere Length Following Wartime Captivity. Health Psychol. 2018, 37, 1067–1076. [Google Scholar] [CrossRef]
- Dong, C.; Ji, Y.; Fu, Z.; Qi, Y.; Yi, T.; Yang, Y.; Sun, Y.; Sun, H. Precision Management in Chronic Disease: An AI Empowered Perspective on Medicine-Engineering Crossover. iScience 2025, 28, 112044. [Google Scholar] [CrossRef]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H.; et al. Human Postprandial Responses to Food and Potential for Precision Nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef]
- Miller, D.J.; Lastella, M.; Scanlan, A.T.; Bellenger, C.; Halson, S.L.; Roach, G.D.; Sargent, C. A Validation Study of the WHOOP Strap against Polysomnography to Assess Sleep. J. Sports Sci. 2020, 38, 2631–2636. [Google Scholar] [CrossRef]
- Bale, T.L.; Epperson, C.N. Sex Differences and Stress across the Lifespan. Nat. Neurosci. 2015, 18, 1413–1420. [Google Scholar] [CrossRef]
- Iurciuc, S.; Cimpean, A.M.; Mitu, F.; Heredea, R.; Iurciuc, M. Vascular aging and subclinical atherosclerosis: Why such a “never ending” and challenging story in cardiology? Clin. Interv. Aging 2017, 12, 1339–1345. [Google Scholar] [CrossRef]
- Khateri, S.; Ghanei, M.; Keshavarz, S.; Soroush, M.; Haines, D. Incidence of Lung, Eye, and Skin Lesions as Late Complications in 34,000 Iranians with Wartime Exposure to Mustard Agent. J. Occup. Env. Environ. Med. 2003, 45, 1136–1143. [Google Scholar] [CrossRef]
- Yang, L.; Lu, J.; Zhao, Z.; Zhang, Z.; Yang, W.; Zhang, G. Research Progress on Inflammation and Immune Dysregulation in PTSD. Brain Behav. 2025, 15, e70633. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.L.; Koenen, K.C.; Chen, Q.; Gilsanz, P.; Mason, S.M.; Prescott, J.; Ratanatharathorn, A.; Rimm, E.B.; Sumner, J.A.; Winning, A.; et al. Posttraumatic Stress Disorder and Accelerated Aging: PTSD and Leukocyte Telomere Length in a Sample of Civilian Women. Depress. Anxiety 2017, 34, 391–400. [Google Scholar] [CrossRef]
- Bersani, F.S.; Mellon, S.H.; Lindqvist, D.; Kang, J.I.; Rampersaud, R.; Somvanshi, P.R.; Doyle, F.J.; Hammamieh, R.; Jett, M.; Yehuda, R.; et al. Novel Pharmacological Targets for Combat PTSD—Metabolism, Inflammation, The Gut Microbiome, and Mitochondrial Dysfunction. Mil. Med. 2020, 185, 311–318. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Cowan, F. Revisiting Medical Implications of the Multi-Threat Medical Countermeasure Hypothesis. Available online: https://www.researchgate.net/publication/374163447_Title_Revisiting_Medical_Implications_of_the_Multi-threat_Medical_Countermeasure_Hypothesis (accessed on 5 October 2025).
- Cowan, F.M.; Broomfield, C.A. Putative Roles of Inflammation in the Dermatopathology of Sulfur Mustard. Cell Biol. Toxicol. 1993, 9, 201–213. [Google Scholar] [CrossRef]
- Cowan, F.; Shih, T.; Lenz, D.; Madsen, J.; Broomfield, C. Hypothesis for Synergistic Toxicity of Organophosphorus Poisoning-Induced Cholinergic Crisis and Anaphylactoid Reactions. J. Appl. Toxicol. 1996, 16, 25–33. [Google Scholar] [CrossRef]
- Cowan, F.M.; Broomfield, C.A.; Lenz, D.E.; Smith, W.J. Putative Role of Proteolysis and Inflammatory Response in the Toxicity of Nerve and Blister Chemical Warfare Agents: Implications for Multi-Threat Medical Countermeasures. J. Appl. Toxicol. 2003, 23, 177–186. [Google Scholar] [CrossRef]
- Riedl, J.M.; Barth, D.A.; Brueckl, W.M.; Zeitler, G.; Foris, V.; Mollnar, S.; Stotz, M.; Rossmann, C.H.; Terbuch, A.; Balic, M.; et al. C-Reactive Protein (CRP) Levels in Immune Checkpoint Inhibitor Response and Progression in Advanced Non-Small Cell Lung Cancer: A Bi-Center Study. Cancers 2020, 12, 2319. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Bhatta, M.; Davies, M.; Deanfield, J.E.; Garvey, W.T.; Jensen, C.; Kandler, K.; Kushner, R.F.; Rubino, D.M.; Kosiborod, M.N. Effects of Once-Weekly Semaglutide 2.4 Mg on C-Reactive Protein in Adults with Overweight or Obesity (STEP 1, 2, and 3): Exploratory Analyses of Three Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trials. EClinicalMedicine 2023, 55, 101737. [Google Scholar] [CrossRef]
- Cowan, F.; Klein, D.; Armstrong, G.; Stylos, W.; Pearson, J. Fc Receptor Mediated Immune Regulation and Gene Expression—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/7004510/ (accessed on 5 April 2025).
- Cowan, F.; ChatGPT 4o; Haines, D. Multi-Threat Medical Countermeasures a Polypharmacy-Pharmacopeia and Proximate-Panacea? Empowering Every Doctor as a Researcher and Apothecary for Global Cost-Effective Healthcare. 2024. [Google Scholar]
- Cowan, F.M.; Klein, D.L.; Armstrong, G.R.; Ablashi, D.V.; Pearson, J.W.; Bensinger, W.I. Inhibition of Rat Adenocarcinoma Metastases by “Staphylococcus Aureus” Protein A. Biomed. Pharmacother. 1982, 36, 29–31. [Google Scholar]
- US5189014A—Method of Treating Cellular Fc Receptor Mediated Hypersensitivity Immune Disorders—Google Patents. Available online: https://patents.google.com/patent/US5189014A/en (accessed on 6 October 2025).
- Catanzaro, E.; Beltrán-Visiedo, M.; Galluzzi, L.; Krysko, D.V. Immunogenicity of Cell Death and Cancer Immunotherapy with Immune Checkpoint Inhibitors. Cell Mol. Immunol. 2025, 22, 24–39. [Google Scholar] [CrossRef]
- Cowan, F. The Forgotten Foundations and Implications of Fc Receptor Pioneering Checkpoint Immunotherapy. 2023. [Google Scholar]
- Chabner, B.A.; Roberts, T.G. Chemotherapy and the War on Cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Cowan, F. The Matthew’s Effect Accreditation and Misconduct and Patent Fraud. Available online: https://www.researchgate.net/publication/378970701_The_Matthew’s_Effect_Accreditation_and_Misconduct_and_Patent_Fraud (accessed on 5 October 2025).
- Medical Countermeasures | About BARDA (Biomedical Advanced Research and Development Authority). Available online: https://www.medicalcountermeasures.gov/BARDA (accessed on 5 October 2025).
- Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; LeBrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-in-Human, Open-Label, Pilot Study. EBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef]
- Barzilai, N.; Cuervo, A.M.; Austad, S. Aging as a Biological Target for Prevention and Therapy. JAMA 2018, 320, 1321–1322. [Google Scholar] [CrossRef]
- Juengst, E.T.; Binstock, R.H.; Mehlman, M.J.; Post, S.G. Aging. Antiaging Research and the Need for Public Dialogue. Science 2003, 299, 1323. [Google Scholar] [CrossRef] [PubMed]
- Price, W.N.; Cohen, I.G. Privacy in the Age of Medical Big Data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]

| Drug/Supplement | Anti-Inflammatory | Action/Mechanisms |
|---|---|---|
| Metformin | Yes | AMPK activation, insulin sensitization, gut microbiome modulation; COVID-19 benefit |
| Hydrocortisone | Yes (Glucocorticoid) | Suppresses innate immune response |
| Testosterone | Yes (context-dependent) | Neuroendocrine modulation; cognitive support, mood regulation |
| Diclofenac | Yes (NSAID) | COX inhibition; pain reduction |
| Dasatinib | Yes (Senolytic) | Tyrosine kinase inhibitor |
| DHA (Docosahexaenoic acid) | Yes (Omega-3) | Brain protection; mitochondrial support |
| Vitamin D3 (Cholecalciferol) | Yes | Immune modulation; bone health |
| Estradiol | Yes | Hormonal balance; vascular protection; neuroprotection |
| Mecamylamine | Yes | Cholinergic anti-inflammatory reflex; nicotinic receptor blockade |
| Nicotine | Yes | Alpha-7 nicotinic receptor agonist; neurostimulation; cognitive enhancement |
| Quercetin | Yes | Antioxidant; senolytic; immune regulation |
| Resveratrol | Yes | SIRT1 activation; mitochondrial and cardiovascular support |
| Sirolimus (Rapamycin) | Yes | mTOR inhibition; cognitive improvement; tumor suppression; lupus; GVHD; COVID-19 |
| Curcumin | Yes | COX/LOX inhibition; BDNF enhancer; antioxidant |
| Deprenyl (Selegiline) | Yes (indirect) | MAO-B inhibition; dopaminergic and cognitive support |
| GLP-1 Agonists | Yes | NF-κB and TLR modulation; metabolic regulation; weight loss; broad MTMC effects |
| Melatonin | Yes | Antioxidant; circadian rhythm regulation; neuroprotection |
| N-Acetylcysteine (NAC) | Yes | Glutathione precursor; antioxidant; respiratory and neurological support |
| Berberine | Yes | AMPK activation; anti-diabetic; metabolic and cardiovascular benefits |
| Pterostilbene | Yes | SIRT1 activation; antioxidant; improved bioavailability over resveratrol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haines, D.D.; Rose, S.C.; Cowan, F.M.; Mahmoud, F.F.; Rizvanov, A.A.; Tosaki, A. Leveraging Artificial Intelligence and Modulation of Oxidative Stressors to Enhance Healthspan and Radical Longevity. Biomolecules 2025, 15, 1501. https://doi.org/10.3390/biom15111501
Haines DD, Rose SC, Cowan FM, Mahmoud FF, Rizvanov AA, Tosaki A. Leveraging Artificial Intelligence and Modulation of Oxidative Stressors to Enhance Healthspan and Radical Longevity. Biomolecules. 2025; 15(11):1501. https://doi.org/10.3390/biom15111501
Chicago/Turabian StyleHaines, Donald D., Stephen Christopher Rose, Fred M. Cowan, Fadia F. Mahmoud, Albert A. Rizvanov, and Arpad Tosaki. 2025. "Leveraging Artificial Intelligence and Modulation of Oxidative Stressors to Enhance Healthspan and Radical Longevity" Biomolecules 15, no. 11: 1501. https://doi.org/10.3390/biom15111501
APA StyleHaines, D. D., Rose, S. C., Cowan, F. M., Mahmoud, F. F., Rizvanov, A. A., & Tosaki, A. (2025). Leveraging Artificial Intelligence and Modulation of Oxidative Stressors to Enhance Healthspan and Radical Longevity. Biomolecules, 15(11), 1501. https://doi.org/10.3390/biom15111501

