Exploring the Association of FTO rs9939609 with Type 2 Diabetes, Fasting Glucose and HbA1c in a Southeastern Mexican Region of Predominant Mayan Genetic Background
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometrics and Biochemical Measurements
2.3. Genotyping
2.4. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Frequency Distribution and Associations with T2D
3.3. Associations with Fasting Glucose and HbA1c
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADE | Average Direct Effect |
| ACME | Average Causal Mediation Effect |
| BMI | Body mass index |
| FTO | Fat mass and obesity-associated |
| SNV | Single-nucleotide variant |
| T2D | Type 2 diabetes |
References
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target Ther. 2024, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, H.; Babaya, N.; Noso, S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J. Diabetes Investig. 2021, 12, 1526–1539. [Google Scholar] [CrossRef]
- Basto-Abreu, A.; López-Olmedo, N.; Rojas-Martínez, R.; Aguilar-Salinas, C.A.; Moreno-Banda, G.L.; Carnalla, M.; Rivera, J.A.; Romero-Martinez, M.; Barquera, S.; Barrientos-Gutierrez, T.; et al. Prevalencia de prediabetes y diabetes en México: Ensanut 2022. Salud Pública México 2023, 65, s163–s168. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Comunicado de Prensa No.645/21. INEGI. 2021. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2021/EAP_Diabetes2021.pdf (accessed on 28 August 2025).
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48 (Suppl. 1), S27–S49. [Google Scholar] [CrossRef]
- Suzuki, K.; Hatzikotoulas, K.; Southam, L.; Taylor, H.J.; Yin, X.; Lorenz, K.M.; Mandla, R.; Huerta-Chagoya, A.; Melloni, G.E.M.; Rayner, N.W.; et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 2024, 627, 347–357. [Google Scholar] [CrossRef]
- Diabetes Genetics Replication and Meta-Analysis (DIAGRAM) Consortium; Parra, E.J.; Below, J.E.; Krithika, S.; Valladares, A.; Barta, J.L.; Cox, N.J.; Hanis, C.L.; Wacher, N.; Garcia-Mena, J.; et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia 2011, 54, 2038–2046. [Google Scholar]
- Guardado-Estrada, M.; Juarez-Torres, E.; Medina-Martinez, I.; Wegier, A.; Macías, A.; Gomez, G.; Cruz-Talonia, F.; Roman-Bassaure, E.; Piñero, D.; Kofman-Alfaro, S.; et al. A great diversity of Amerindian mitochondrial DNA ancestry is present in the Mexican mestizo population. J. Hum. Genet. 2009, 54, 695–705. [Google Scholar] [CrossRef]
- Lara-Riegos, J.; Azcorra-Pérez, H.S. Diabesity among the Yucatecan Maya. Metabolism, Genotype, Phenotype and Considerations of the Sociocultural Environment and Early Development. Rev. Bioméd. 2023, 34, 168–178. Available online: https://revistabiomedica.uady.mx/index.php/revbiomed/article/view/1048/1208 (accessed on 28 April 2023). [CrossRef]
- Domínguez-Cruz, M.G.; Muñoz, M.d.L.; Totomoch-Serra, A.; García-Escalante, M.G.; Burgueño, J.; Valadez-González, N.; Pinto-Escalantes, D.; Díaz-Badillo, Á. Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya population. Gene 2018, 677, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pozos, K.; Ortíz-López, M.G.; Peña-Espinoza, B.I.; Granados-Silvestre, M.d.L.Á.; Jiménez-Jacinto, V.; Verleyen, J.; Tekola-Ayele, F.; Sanchez-Flores, A.; Menjivar, M. Whole-exome sequencing in maya indigenous families: Variant in PPP1R3A is associated with type 2 diabetes. Mol. Genet. Genom. 2018, 293, 1205–1216. [Google Scholar] [CrossRef]
- Lara-Riegos, J.; Ortiz-López, M.; Peña-Espinoza, B.; Montúfar-Robles, I.; Peña-Rico, M.; Sánchez-Pozos, K.; Granados-Silvestre, M.; Menjivar, M. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene 2015, 565, 68–75. [Google Scholar] [CrossRef]
- Martínez-Aguilar, V.M.; Carrillo-Ávila, B.A.; García-Escalante, G.; Vera-Gamboa, L.; Escobar-García, D.M.; Pozos-Guillén, A.; Guzmán-Marin, E.; Valadez-González, N. Association of CCR5 G59029A and RANTES –28 C/G polymorphisms in patients with chronic periodontitis and/or Type 2 Diabetes Mellitus, in a Southeastern Mexican population. Investig. Clínica 2018, 59, 135. [Google Scholar] [CrossRef]
- Domínguez-Cruz, M.G.; Muñoz, M.d.L.; Totomoch-Serra, A.; García-Escalante, M.G.; Burgueño, J.; Valadez-González, N.; Pinto-Escalante, D.; Díaz-Badillo, A. Maya gene variants related to the risk of type 2 diabetes in a family-based association study. Gene 2020, 730, 144259. [Google Scholar] [CrossRef]
- Fragoso-Bargas, N.; Valadez González, N.; Ruíz-García, L.; Vera-Gamboa, L.; Martínez-Aguilar, V.M.; Nakazawa-Ueji, Y.E.; Valencia-Pacheco, G. Asociación del polimorfismo rs1800795 de la Interleucina-6 con la Diabetes tipo 2 y características clínicas relacionadas. Rev. Médica Univ. Costa Rica 2024, 18, 28–37. [Google Scholar]
- Popović, A.-M.; Turković, A.H.; Žuna, K.; Bačun-Družina, V.; Rubelj, I.; Matovinović, M. FTO Gene Polymorphisms at the Crossroads of Metabolic Pathways of Obesity and Epigenetic Influences. Food Technol. Biotechnol. 2023, 61, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.A.; Shkurat, T.P.; Abbas, A.H. Association analysis of FTO gene polymorphisms rs9939609 and obesity risk among the adults: A systematic review and meta-analysis. Meta Gene 2021, 27, 100832. [Google Scholar] [CrossRef]
- Pratiwi, D.; Sidartha, M.; Wiyarta, E.; Harimawan, I.W.A.; Lestari, N.M.D.A.; Kim, B.; Taslim, N.A.; Tallei, T.E.; Nurkolis, F.; Syahputra, R.A. Comparison of the risk of obesity in the FTO rs9939609 genotype in a multiethnic group in Asia systematic review and meta-analysis. Front. Med. 2025, 12, 1522318. [Google Scholar] [CrossRef]
- Vázquez-Pérez, L.A.; Hattori-Hara, M.; Arankowsky-Sandoval, G.; Pérez-Mendoza, G.; Rubi-Castellanos, R.; Rangel-Méndez, J.A.; Pinto-Escalante, D.; Canto-Cetina, T.; González-Herrera, L.; P, G. Association between personality traits, eating behaviors, and the genetic polymorphisms FTO-rs9939609 and MAO-A 30 bp u-VNTR with obesity in Mexican Mayan children. Front. Genet. 2024, 15, 1421870. [Google Scholar] [CrossRef]
- Amine Ikhanjal, M.; Ali Elouarid, M.; Zouine, C.; Errafii, K.; Ghazal, H.; Alidrissi, N.; Bakkali, F.; Benmoussa, A.; Hamdi, S. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: A Meta-Analysis. Gene 2023, 887, 147791. [Google Scholar] [CrossRef]
- Hertel, J.K.; Johansson, S.; Sonestedt, E.; Jonsson, A.; Lie, R.T.; Platou, C.G.P.; Nilsson, P.M.; Rukh, G.; Midthjell, K.; Hveem, K.; et al. FTO, Type 2 Diabetes, and Weight Gain Throughout Adult Life: A Meta-Analysis of 41,504 Subjects From the Scandinavian HUNT, MDC, and MPP Studies. Diabetes 2011, 60, 1637–1644. [Google Scholar] [CrossRef]
- Sabarneh, A.; Ereqat, S.; Cauchi, S.; AbuShamma, O.; Abdelhafez, M.; Ibrahim, M.; Nasereddin, A. Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med. Genet. 2018, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Roman, J.; Angulo-Zamudio, U.A.; León-Sicairos, N.; Medina-Serrano, J.; DeLira-Bustillos, N.; Villamil-Ramírez, H.; Canizales-Quinteros, S.; Macías-Kauffer, L.; Campos-Romero, A.; Alcántar-Fernández, J.; et al. Association of FTO, ABCA1, ADRB3, and PPARG variants with obesity, type 2 diabetes, and metabolic syndrome in a Northwest Mexican adult population. J. Diabetes Complicat. 2021, 35, 108025. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Comparán, M.; Flores-Dorantes, M.T.; Villarreal-Molina, M.T.; Rodríguez-Cruz, M.; García-Ulloa, A.C.; Robles, L.; Huertas-Vázquez, A.; Saucedo-Villarreal, N.; López-Alarcón, M.; Sánchez-Muñoz, F.; et al. The FTO Gene Is Associated With Adulthood Obesity in the Mexican Population. Obesity 2008, 16, 2296–2301. [Google Scholar] [CrossRef] [PubMed]
- Peña-Espinoza, B.; Juárez-López, C.; Ortiz-López, G.; Granados-Silvestre, A.; Menjivar, M. High frequency of metabolic syndrome in non-obese Maya children from México: Implications of PPARG, KCNJ1, HHEX, HNF4A, ACE (I/D), FTO and ABCA1 genetics variants. Gac. Med. Mex. 2025, 161, 110–118. [Google Scholar] [CrossRef]
- Ortega, P.E.N.; Meneses, M.E.; Delgado-Enciso, I.; Irecta-Nájera, C.A.; Castro-Quezada, I.; Solís-Hernández, R.; Flores-Guillén, E.; García-Miranda, R.; Valladares-Salgado, A.; Locia-Morales, D.; et al. Association of rs9939609-FTO with metabolic syndrome components among women from Mayan communities of Chiapas, Mexico. J. Physiol. Anthropol. 2021, 40, 11. [Google Scholar] [CrossRef]
- Domínguez-Cruz, M.G. Búsqueda de SNPs en Genes de Susceptibilidad a Diabetes Tipo 2 Asociados a Origen Étnico en Una Población Mexicana (Yucatán); Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav): México, México, 2018; Available online: https://repositorio.cinvestav.mx/handle/cinvestav/3277 (accessed on 20 August 2025).
- Graffelman, J.; Weir, B.S. Testing for Hardy–Weinberg equilibrium at biallelic genetic markers on the X chromosome. Heredity 2016, 116, 558–568. [Google Scholar] [CrossRef]
- Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Softw. 2015, 64, 1–23. [Google Scholar] [CrossRef]
- Graffelman, J.; Camarena, J.M. Graphical Tests for Hardy-Weinberg Equilibrium Based on the Ternary Plot. Hum. Hered. 2007, 65, 77–84. [Google Scholar] [CrossRef]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. Abecasis GR. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef]
- Tingley, D.; Yamamoto, T.; Hirose, K.; Keele, L.; Imai, K. Mediation: R Package for Causal Mediation Analysis. J. Stat. Softw. 2014, 59, 1–38. [Google Scholar] [CrossRef]
- Guang, L.; Ma, S.; Yao, Z.; Song, D.; Chen, Y.; Liu, S.; Wang, P.; Su, J.; Wang, Y.; Luo, L.; et al. An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells. Nat. Commun. 2025, 16, 1645. [Google Scholar] [CrossRef]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef]
- Poosri, S.; Boonyuen, U.; Chupeerach, C.; Soonthornworasiri, N.; Kwanbunjan, K.; Prangthip, P. Association of FTO variants rs9939609 and rs1421085 with elevated sugar and fat consumption in adult obesity. Sci. Rep. 2024, 14, 25618. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, S.; Wang, S.; Cai, T.; Qin, L.; Wang, X.; Zhu, G.; Wang, H.; Yang, W.; Fang, C.; et al. Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J. Nutr. Biochem. 2024, 123, 109512. [Google Scholar] [CrossRef]
- Binh, T.Q.; Phuong, P.T.; Nhung, B.T.; Thoang, D.D.; Lien, H.T.; Van Thanh, D. Association of the common FTO-rs9939609 polymorphism with type 2 diabetes, independent of obesity-related traits in a Vietnamese population. Gene 2013, 513, 31–35. [Google Scholar] [CrossRef]
- Saber-Ayad, M.; Manzoor, S.; El Serafi, A.; Mahmoud, I.; Hammoudeh, S.; Rani, A.; Abusnana, S.; Sulaiman, N. The FTO rs9939609 “A” allele is associated with impaired fasting glucose and insulin resistance in Emirati population. Gene 2019, 681, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Naghshband, Z.; Malini, S.S. Association of FTO gene variant rs9939609 with hyperandrogenemia and fasting glucose levels in South Indian women with polycystic ovarian syndrome. Egypt J. Med. Hum. Genet. 2022, 23, 79. [Google Scholar] [CrossRef]
- Hussain, M.; Waheed, A.; Elahi, A.; Mustafa, G. Fat Mass and Obesity-Related (FTO) Gene Variant Is a Predictor of CVD in T2DM Patients. J. Diabetes Res. 2024, 2024, 5914316. [Google Scholar] [CrossRef]

| Phenotype | All (n = 184) | Cases (n = 92) | Controls (n = 92) |
| Age | 58.21 (10.78) | 56.83 (10.20) | 59.60 (11.21) |
| Sex (female) | 133 (72) | 70 (76) | 63 (69) |
| Fasting glucose (mg/dL) | 121.52 (53.88) | 155.50 (57.36) | 87.53 (14.59) |
| HbA1c (%) | 6.69 (2.02) | 8.08 (1.94) | 5.29 (0.70) |
| BMI (kg/m2) | 29.60 (5.07) | 30.30 (5.55) | 28.89 (4.47) |
| Waist circumference (cm) | 95.66 (10.81) | 97.79 (10.97) | 93.54 (10.28) |
| Waist/hip ratio | 0.91 (0.06) | 0.91 (0.06) | 0.91 (0.06) |
| Genotype and Allele frequencies | |||||||
| Genotype | All | Cases | Controls | Allele | All | Cases | Controls |
| AA | 7 (3.8) | 5 (5.4) | 2 (2.2) | A | 56 (15.2) | 36 (19.6) | 20 (10.9) |
| AT | 42 (22.8) | 26 (28.3) | 16 (17.4) | T | 312 (84.8) | 148 (80.4) | 164 (89.1) |
| TT | 135 (73.4) | 61 (66.3) | 74 (80.4) | ||||
| Association analyses with T2D | |||||||
| Model | Additive OR (IC) | p | Dominant OR (IC) | p | Recessive OR (IC) | p | |
| Unadjusted | 1.88 (1.08–3.40) | 0.031 | 2.09 (1.08–4.15) | 0.032 | 2.59 (0.54–18.39) | 0.264 | |
| Age + Sex + BMI | 1.89 (1.07–3.47) | 0.032 | 2.14 (1.09–4.30) | 0.030 | 2.43 (0.51–17.36) | 0.297 | |
| Age + Sex + Waist | 1.88 (1.06–3.47) | 0.036 | 2.11 (1.06–4.29) | 0.036 | 2.54 (0.52–18.46) | 0.280 | |
| Age + Sex + WHR | 1.93 (1.09–3.55) | 0.027 | 2.18 (1.10–4.39) | 0.027 | 2.58 (0.52–18.75) | 0.274 | |
| Phenotype | Model | Additive | p | Dominant | p | Recessive | p |
|---|---|---|---|---|---|---|---|
| Beta (SE) | Beta (SE) | Beta (SE) | |||||
| Glucose (mg/dL) | Unadjusted | 14.54 (7.34) | 0.049 | 19.76 (8.89) | 0.027 | 8.85 (20.81) | 0.671 |
| Age + Sex + BMI | 7.26 (1.98) | 0.049 | 19.88 (8.79) | 0.025 | 6.94 (20.60) | 0.737 | |
| Age + Sex + BMI + T2D | 4.61 (5.86) | 0.432 | 8.11 (7.09) | 0.254 | −6.88 (16.28) | 0.673 | |
| Age + Sex + Waist | 13.57 (7.09) | 0.057 | 18.66 (8.59) | 0.031 | 7.21 (20.08) | 0.720 | |
| Age + Sex + Waist + T2D | 4.52 (5.80) | 0.436 | 7.88 (7.03) | 0.264 | −6.34 (16.13) | 0.694 | |
| Age + Sex + WHR | 14.61 (7.17) | 0.043 | 20.15 (8.68) | 0.021 | 7.43 (20.35) | 0.716 | |
| Age + Sex + WHR + T2D | 4.85 (5.79) | 0.403 | 8.38 (7.00) | 0.233 | −6.49 (16.09) | 0.687 | |
| HbA1c (%) | Unadjusted | 0.52 (0.28) | 0.061 | 0.78 (0.33) | 0.020 | −0.08 (0.78) | 0.914 |
| Age + Sex + BMI | 0.52 (0.27) | 0.058 | 0.79 (0.33) | 0.016 | −0.17 (0.77) | 0.829 | |
| Age + Sex + BMI + T2D | 0.11 (0.20) | 0.585 | 0.31 (0.25) | 0.215 | −0.74 (0.56) | 0.186 | |
| Age + Sex + Waist | 0.49 (0.27) | 0.067 | 0.76 (0.32) | 0.020 | −0.16 (0.76) | 0.833 | |
| Age + Sex + Waist + T2D | 0.11 (0.20) | 0.589 | 0.30 (0.24) | 0.219 | −0.74 (0.56) | 0.190 | |
| Age + Sex + WHR | 0.52 (0.27) | 0.053 | 0.80 (0.32) | 0.015 | −0.15 (0.76) | 0.841 | |
| Age + Sex + WHR + T2D | 0.12 (0.20) | 0.564 | 0.31(0.24) | 0.202 | −0.73 (0.56) | 0.188 |
| Glucose (mg/dL) | |||
|---|---|---|---|
| Model | Effect | CI 95% | p-Value |
| ACME (mg/dL) | 14.90 | −1.053, 25.00 | 0.066 |
| ADE (mg/dL) | 7.67 | −8.56, 24.32 | 0.374 |
| Total Effect (mg/dL) | 22.58 | 0.01, 39.92 | 0.050 |
| Proportion Mediated | 66 | −35, 242 | 0.082 |
| HbA1c (%) | |||
| ACME (%) | 0.46 | −0.02, 0.100 | 0.056 |
| ADE (%) | 0.28 | −0.26, 0.85 | 0.342 |
| Total Effect (%) | 0.75 | −0.01, 1.56 | 0.056 |
| Proportion Mediated (%) * | 62 | −11, 226 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragoso-Bargas, N.; Toloza-Couoh, L.N.; Quintal-Ortiz, I.; Valencia-Pacheco, G.; Valadez-Gonzalez, N. Exploring the Association of FTO rs9939609 with Type 2 Diabetes, Fasting Glucose and HbA1c in a Southeastern Mexican Region of Predominant Mayan Genetic Background. Biomolecules 2025, 15, 1492. https://doi.org/10.3390/biom15111492
Fragoso-Bargas N, Toloza-Couoh LN, Quintal-Ortiz I, Valencia-Pacheco G, Valadez-Gonzalez N. Exploring the Association of FTO rs9939609 with Type 2 Diabetes, Fasting Glucose and HbA1c in a Southeastern Mexican Region of Predominant Mayan Genetic Background. Biomolecules. 2025; 15(11):1492. https://doi.org/10.3390/biom15111492
Chicago/Turabian StyleFragoso-Bargas, Nicolas, Litzy Naomi Toloza-Couoh, Irma Quintal-Ortiz, Guillermo Valencia-Pacheco, and Nina Valadez-Gonzalez. 2025. "Exploring the Association of FTO rs9939609 with Type 2 Diabetes, Fasting Glucose and HbA1c in a Southeastern Mexican Region of Predominant Mayan Genetic Background" Biomolecules 15, no. 11: 1492. https://doi.org/10.3390/biom15111492
APA StyleFragoso-Bargas, N., Toloza-Couoh, L. N., Quintal-Ortiz, I., Valencia-Pacheco, G., & Valadez-Gonzalez, N. (2025). Exploring the Association of FTO rs9939609 with Type 2 Diabetes, Fasting Glucose and HbA1c in a Southeastern Mexican Region of Predominant Mayan Genetic Background. Biomolecules, 15(11), 1492. https://doi.org/10.3390/biom15111492

