Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery
Abstract
1. Introduction: Aging and Natural Products
2. Mechanistic Insights into Anti-Aging Effects of Natural Products
3. Synergy Strategies from Pairwise Targets to Multicomponent Formulations
4. Mechanistic Discovery with Molecular Docking and Neural Networks
5. Process Optimization for Translation
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miwa, S.; Kashyap, S.; Chini, E.; von Zglinicki, T.J. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 2022, 132, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 2018, 156, 186–195. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural compounds and products from an anti-aging perspective. Molecules 2022, 27, 7084. [Google Scholar] [CrossRef]
- Song, L.; Zhang, S. Anti-aging activity and modes of action of compounds from natural food sources. Biomolecules 2023, 13, 1600. [Google Scholar] [CrossRef]
- Torkamannia, A.; Omidi, Y.; Ferdousi, R. SYNDEEP: A deep learning approach for the prediction of cancer drugs synergy. Sci. Rep. 2023, 13, 6184. [Google Scholar] [CrossRef]
- Noor, F.; Asif, M.; Ashfaq, U.A.; Qasim, M.; Qamar, M.T. Machine learning for synergistic network pharmacology: A comprehensive overview. Brief. Bioinform. 2018, 24, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, X.; Ma, J.; Liu, S.; Jin, X.; Liu, B. Unveiling the longevity potential of natural phytochemicals: A comprehensive review of active ingredients in dietary plants and herbs. J. Agric. Food Chem. 2024, 72, 24908–24927. [Google Scholar] [CrossRef]
- Ahmed, M. Targeting aging pathways with natural compounds: A review of curcumin, epigallocatechin gallate, thymoquinone, and resveratrol. Immun. Ageing 2025, 22, 28. [Google Scholar] [CrossRef]
- Ren, Q.; Qu, L.; Yuan, Y.; Wang, F. Natural modulators of key signaling pathways in skin inflammageing. Clin. Cosmet. Investig. Dermatol. 2024, 17, 2967–2988. [Google Scholar] [CrossRef]
- Chen, Q.; Ruan, D.; Shi, J.; Du, D.; Bian, C. The multifaceted roles of natural products in mitochondrial dysfunction. Front. Pharmacol. 2023, 14, 1093038. [Google Scholar] [CrossRef]
- Taylor, E.; Kim, Y.; Zhang, K.; Chau, L.; Nguyen, B.C.; Rayalam, S.; Wang, X. Antiaging mechanism of natural compounds: Effects on autophagy and oxidative stress. Molecules 2022, 27, 4396. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, A.; Corsetti, G. Natural compounds and autophagy: Allies against neurodegeneration. Front. Cell Develop. Biol. 2020, 8, 555409. [Google Scholar] [CrossRef] [PubMed]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L.; et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017, 9, 1477–1536. [Google Scholar] [CrossRef] [PubMed]
- Mundo Rivera, V.M.; Tlacuahuac Juárez, J.R.; Murillo Melo, N.M.; Leyva Garcia, N.; Magaña, J.J.; Cordero Martínez, J.; Jiménez Gutierrez, G.E. Natural autophagy activators to fight age-related diseases. Cells 2024, 13, 1611. [Google Scholar] [CrossRef]
- Strong, R.; Miller, R.A.; Antebi, A.; Astle, C.M.; Bogue, M.; Denzel, M.S.; Fernandez, E.; Flurkey, K.; Hamilton, K.L.; Lamming, D.W. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 2016, 15, 872–884. [Google Scholar] [CrossRef]
- Son, H.-U.; Yoon, E.-K.; Yoo, C.-Y.; Park, C.-H.; Bae, M.-A.; Kim, T.-H.; Lee, C.H.; Lee, K.W.; Seo, H.; Kim, K.-J. Effects of synergistic inhibition on α-glucosidase by phytoalexins in soybeans. Biomolecules 2019, 9, 828. [Google Scholar] [CrossRef]
- Seo, J.; Jeong, C.; Yoon Park, J.H.; Lee, C.H.; Lee, K.W. Synergistic effects of Rhynchosia nulubilis and Polygonum multiflorum extract combination on cell proliferation via targeting IGFBP-1 & NT-3 and cytotoxicity suppression in testosterone-induced human dermal papilla cells. PLoS ONE 2025, 20, e0321812. [Google Scholar] [CrossRef]
- Lee, W.; Lee, C.H.; Lee, J.; Jeong, Y.; Park, J.-H.; Nam, I.-J.; Lee, D.S.; Lee, H.M.; Lee, J.; Yun, N. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. J. Ethnopharmacol. 2021, 270, 113795. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Prakash, P.; Singha, P.; Prasad, K.; Singh, S.K. Modeling and optimization of ultrasound-assisted extraction of bioactive compounds from Allium sativum leaves using response surface methodology and artificial neural network coupled with genetic algorithm. Foods 2023, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- McNutt, A.T.; Li, Y.; Meli, R.; Aggarwal, R.; Koes, D.R. GNINA 1.3: The next increment in molecular docking with deep learning. J. Cheminformat. 2025, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef]
- Costa, R.; Nunes, C.; Lima, S.A.C.; Gameiro, P.; Reis, S. Nanostructured lipid carrier-embedded hydrogels for enhanced skin delivery of quercetin: Optimized formulation with pomegranate oil for UVB protection. Int. J. Pharm. 2025, 681, 125894. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Sivapragasam, N.; Redha, A.A.; Maqsood, S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem. 2024, 448, 139061. [Google Scholar] [CrossRef]
- Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100110. [Google Scholar] [CrossRef]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef]
- Gangwal, A.; Lavecchia, A. Artificial intelligence in natural product drug discovery: Current applications and future perspectives. J. Med. Chem. 2025, 68, 3948–3969. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
Natural Product Class | Representative Compounds | Key Molecular Targets | Mechanistic Outcomes |
---|---|---|---|
Polyphenols | Resveratrol, Quercetin, EGCG | SIRT1, AMPK, NF-κB, mTOR | Autophagy Up, Antioxidant defense Up, Inflammation Down |
Terpenoids | Ginsenosides, Astragaloside IV | PI3K/AKT, MAPK, Nrf2/ARE | Neuroprotection Up, Redox balance Up |
Alkaloids | Berberine, Caffeine | AMPK, JAK/STAT | Mitochondrial function Up, Pro-inflammatory signaling Down |
Polysaccharides | β-Glucan, Fucoidan | TLR4/NF-κB, MAPK | Immune modulation Up, Chronic inflammation Down |
Peptides | Collagen peptides, Casein-derived peptides | mTOR, IGF-1 | Proteostasis Up, Tissue regeneration Up |
Marine metabolites | Fucoxanthin, Astaxanthin | Nrf2, FOXO, SIRT1 | Antioxidant response Up, Cellular senescence Down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.H.; Lee, S.-H. Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery. Biomolecules 2025, 15, 1384. https://doi.org/10.3390/biom15101384
Lee CH, Lee S-H. Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery. Biomolecules. 2025; 15(10):1384. https://doi.org/10.3390/biom15101384
Chicago/Turabian StyleLee, Chang Hyung, and Sang-Han Lee. 2025. "Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery" Biomolecules 15, no. 10: 1384. https://doi.org/10.3390/biom15101384
APA StyleLee, C. H., & Lee, S.-H. (2025). Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery. Biomolecules, 15(10), 1384. https://doi.org/10.3390/biom15101384