Staphylococcal Enterotoxin M Exhibits Thrombin-like Enzymatic Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Constructing Multiple Prokaryotic Expression Plasmids for SEM Protein and S178A Mutant
2.2. Prokaryotic Expression and Purification of SEM and SEM (S178A) Mutant Fusion Protein
2.3. Desalting and Exchange of the Fusion Protein Buffer System via Centrifugal Ultrafiltration
2.4. Analysis of Fusion Protein Primary Structure by Mass Spectrometry (MS) and N-Terminal Sequencing
2.5. Calibration of Gel Filtration Column via Protein Markers Using HPLC
2.6. SE-HPLC Purification of the Ni-Affinity-Purified His6×-TCS-ΔNspSEMWT Fusion Protein
2.7. Bradford-Based Quantification of His6×-TCS-ΔNspSEMWT Fusion Protein
2.8. Chromogenic Analysis of TLA in His6×-TCS-ΔNspSEMWT Fusion Protein
2.9. Characterization of Recombinant Wild-Type ΔNspSEMWT and Mutant ΔNspSEMS178A Proteins by CD and Intrinsic Fluorescence Emission Spectroscopy
2.10. Preparation of the TLA Tag-Free ΔNspSEMWT Protein and Its Complex with Substrate His6×-TCS-ΔNspSEMWT for Subsequent MD Simulations
2.11. MD Simulations of Enzyme (ΔNspSEMWT) and Substrate (His6×-TCS-ΔNspSEMWT) Complex
3. Results and Discussion
3.1. Desalting-Induced Autocatalytic Activation of His6×-TCS-ΔNspSEMWT and Proteolytic Degradation Observed by SDS-PAGE
3.2. Two-Step Purification via IMAC Followed by SE-HPLC and S-2238-Based Chromogenic Detection of His6×-TCS-ΔNspSEMWT
3.3. Impact of Ionic Strength, PH and Substrate on TLA in His6×-TCS-ΔNspSEMWT Fusion Protein
3.4. S178A Mutation in the Catalytic Triad Abolishes TLA of His6×-TCS-ΔNspSEMWT
3.5. Probing Substrate Specificity and TLA in ΔNspSEMWT via MD Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Ma, Y.; Xiao, Y. How does Staphylococcus aureus successfully colonize the nasal cavity. Crit. Rev. Microbiol. 2025, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.-Y.; Wu, F.-H.; Mu, X.-J.; Jiang, Y.-J.; Liu, X.-Q. Monitoring longitudinal antimicrobial resistance trends of Staphylococcus aureus strains worldwide over the past 100 years to decipher its evolution and transmission. J. Hazard. Mater. 2024, 465, 133136. [Google Scholar] [CrossRef] [PubMed]
- Atchade, E.; De Tymowski, C.; Grall, N.; Tanaka, S.; Montravers, P. Toxic shock syndrome: A literature review. Antibiotics 2024, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Cieza, M.Y.R.; Bonsaglia, E.C.R.; Rall, V.L.M.; Dos Santos, M.V.; Silva, N.C.C. Staphylococcal enterotoxins: Description and importance in food. Pathogens 2024, 13, 676. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, Z.; Li, S.; Fang, R.; Ono, H.K.; Hu, D.-L. Molecular characteristics and pathogenicity of Staphylococcus aureus exotoxins. Int. J. Mol. Sci. 2023, 25, 395. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, L.; Li, Q.; Wang, X.; Zhou, T.; Chen, D.; Li, L.; Wang, Y.; Wang, X. Stability and emetic activity of enterotoxin like X (SElX) with high carrier rate of food poisoning Staphylococcus aureus. Int. J. Food Microbiol. 2023, 404, 110352. [Google Scholar] [CrossRef]
- Jarraud, S.; Peyrat, M.A.; Lim, A.; Tristan, A.; Bes, M.; Mougel, C.; Etienne, J.; Vandenesch, F.; Bonneville, M.; Lina, G. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J. Immunol. 2001, 166, 669–677. [Google Scholar] [CrossRef]
- Grumann, D.; Scharf, S.S.; Holtfreter, S.; Kohler, C.; Steil, L.; Engelmann, S.; Hecker, M.; Völker, U.; Bröker, B.M. Immune cell activation by enterotoxin gene cluster (egc)-encoded and non-egc superantigens from Staphylococcus aureus. J. Immunol. 2008, 181, 5054–5061. [Google Scholar] [CrossRef]
- Viçosa, G.N.; Le Loir, A.; Le Loir, Y.; de Carvalho, A.F.; Nero, L.A. egc characterization of enterotoxigenic Staphylococcus aureus isolates obtained from raw milk and cheese. Int. J. Food Microbiol. 2013, 165, 227–230. [Google Scholar] [CrossRef]
- Chao, G.; Bao, G.; Cao, Y.; Yan, W.; Wang, Y.; Zhang, X.; Zhou, L.; Wu, Y. Prevalence and diversity of enterotoxin genes with genetic background of Staphylococcus aureus isolates from different origins in China. Int. J. Food Microbiol. 2015, 211, 142–147. [Google Scholar] [CrossRef]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef]
- Shen, M.; Li, Y.; Zhang, L.; Dai, S.; Wang, J.; Li, Y.; Zhang, L.; Huang, J. Staphylococcus enterotoxin profile of China isolates and the superantigenicity of some novel enterotoxins. Arch. Microbiol. 2017, 199, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Nakamura, H.; Yamamoto, K.; Nishina, N.; Yasufuku, K.; Hirai, Y.; Hirayama, T.; Goto, K.; Hase, A.; Ogasawara, J. Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo, and selu genes without production of classical enterotoxins. Int. J. Food Microbiol. 2017, 256, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ding, D.; Li, D.; Chen, S. Expression and bioactivity analysis of Staphylococcal enterotoxin M and N. Protein Expr. Purif. 2007, 56, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Omoe, K.; Hu, D.-L.; Ono, H.K.; Shimizu, S.; Takahashi-Omoe, H.; Nakane, A.; Uchiyama, T.; Shinagawa, K.; Imanishi, K. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect. Immun. 2013, 81, 3627–3631. [Google Scholar] [CrossRef]
- Ono, H.K.; Hirose, S.; Naito, I.; Sato’o, Y.; Asano, K.; Hu, D.-L.; Omoe, K.; Nakane, A. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiol. Immunol. 2017, 61, 12–16. [Google Scholar] [CrossRef]
- Ono, H.K.; Nishizawa, M.; Yamamoto, Y.; Hu, D.-L.; Nakane, A.; Shinagawa, K.; Omoe, K. Submucosal mast cells in the gastrointestinal tract are a target of staphylococcal enterotoxin type A. FEMS Immunol. Med. Microbiol. 2012, 64, 392–402. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, J.; Yang, D.; Tang, C.; Chen, J. Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 8350–8359. [Google Scholar] [CrossRef]
- Brouillard, J.-N.P.; Günther, S.; Varma, A.K.; Gryski, I.; Herfst, C.A.; Rahman, A.K.M.N.; Leung, D.Y.M.; Schlievert, P.M.; Madrenas, J.; Sundberg, E.J.; et al. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. J. Mol. Biol. 2007, 367, 925–934. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Salgado-Pabón, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.M.; Schlievert, P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef]
- Günther, S.; Varma, A.K.; Moza, B.; Kasper, K.J.; Wyatt, A.W.; Zhu, P.; Rahman, A.K.M.N.; Li, Y.; Mariuzza, R.A.; McCormick, J.K.; et al. A novel loop domain in superantigens extends their T cell receptor recognition site. J. Mol. Biol. 2007, 371, 210–221. [Google Scholar] [CrossRef]
- Nielsen, H.; Tsirigos, K.D.; Brunak, S.; von Heijne, G. A brief history of protein sorting prediction. Protein J. 2019, 38, 200–216. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. FF14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Håkansson, M.; Petersson, K.; Nilsson, H.; Forsberg, G.; Björk, P.; Antonsson, P.; Svensson, L. The crystal structure of staphylococcal enterotoxin H: Implications for binding properties to MHC class II and TcR molecules. J. Mol. Biol. 2000, 302, 527–537. [Google Scholar] [CrossRef]
- Denesyuk, A.I.; Denessiouk, K.; Johnson, M.S.; Uversky, V.N. Structural catalytic core in subtilisin-like proteins and its comparison to trypsin-like serine proteases and alpha/beta-hydrolases. Int. J. Mol. Sci. 2024, 25, 11858. [Google Scholar] [CrossRef]
- Stok, J.E.; Goloshchapov, A.; Song, C.; Wheelock, C.E.; Derbel, M.B.H.; Morisseau, C.; Hammock, B.D. Investigation of the role of a second conserved serine in carboxylesterases via site-directed mutagenesis. Arch. Biochem. Biophys. 2004, 430, 247–255. [Google Scholar] [CrossRef]
- Liu, J. (Southwest Minzu University, Chengdu, Sichuan Province, China); Huang, Q. (Southwest Minzu University, Chengdu, Sichuan Province, China). Personal communication, 2024.
Purification Procedures | Volume (mL) | Protein Concentration (mg/mL) | Total Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification Factor (fold) | Yield (%) |
---|---|---|---|---|---|---|---|
Step 1: crude extract from E. coli cytosol | 25.085 | 5.32 | 133.45 | 6.812 | 0.051 | 1 | 100 |
Step 2: electrophoretically pure recombinant protein from IMAC | 0.800 | 1.86 | 1.49 | 0.158 | 0.106 | 2.078 | 1.12 |
Step 3: chromatographically pure recombinant protein from SE-HPLC | 1.120 | 0.11 | 0.12 | 0.043 | 0.360 | 7.059 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Luo, S.-H.; Tian, W.-F.; Tang, J.-N.; Liu, J. Staphylococcal Enterotoxin M Exhibits Thrombin-like Enzymatic Activity. Biomolecules 2025, 15, 1357. https://doi.org/10.3390/biom15101357
Huang Q, Luo S-H, Tian W-F, Tang J-N, Liu J. Staphylococcal Enterotoxin M Exhibits Thrombin-like Enzymatic Activity. Biomolecules. 2025; 15(10):1357. https://doi.org/10.3390/biom15101357
Chicago/Turabian StyleHuang, Qian, Shuang-Hua Luo, Wan-Fan Tian, Jun-Ni Tang, and Ji Liu. 2025. "Staphylococcal Enterotoxin M Exhibits Thrombin-like Enzymatic Activity" Biomolecules 15, no. 10: 1357. https://doi.org/10.3390/biom15101357
APA StyleHuang, Q., Luo, S.-H., Tian, W.-F., Tang, J.-N., & Liu, J. (2025). Staphylococcal Enterotoxin M Exhibits Thrombin-like Enzymatic Activity. Biomolecules, 15(10), 1357. https://doi.org/10.3390/biom15101357