Vaccinium Species—Unexplored Sources of Active Constituents for Cosmeceuticals
Abstract
:1. Introduction
2. Phytochemical Composition
3. Vaccinium Species in Skin Care
3.1. Skin-Lightening Properties
3.2. Anti-Aging Properties of Vaccinium spp.
3.3. Antioxidant Activity
3.4. UV-Protecting Activity of Vaccinium Species
3.5. Antimicrobial Properties
4. Vaccinium Species in Dermatology
4.1. Skin Cancer Chemoprevention
4.2. Anti-Inflammatory Activity
5. Conclusions and Future Perspectives
6. Review Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Debnath, S.C.; Goyali, J.C. In Vitro Propagation and Variation of Antioxidant Properties in Micropropagated Vaccinium Berry Plants—A Review. Molecules 2020, 25, 788. [Google Scholar] [CrossRef] [PubMed]
- Bujor, O.-C.; Tanase, C.; Popa, M.E. Phenolic Antioxidants in Aerial Parts of Wild Vaccinium Species: Towards Pharmaceutical and Biological Properties. Antioxidants 2019, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- McCubrey, J.A.; LaHair, M.M.; Franklin, R.A. Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxid. Redox Signal. 2006, 8, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Ghahremaninejad, F.; Hoseini, E. Book Review. J. Ethnopharmacol. 2015, 164, 35–36. [Google Scholar] [CrossRef]
- Pervin, M.; Hasnat, M.A.; Lim, J.-H.; Lee, Y.-M.; Kim, E.O.; Um, B.-H.; Lim, B.O. Preventive and Therapeutic Effects of Blueberry (Vaccinium corymbosum ) Extract against DSS-Induced Ulcerative Colitis by Regulation of Antioxidant and Inflammatory Mediators. J. Nutr. Biochem. 2016, 28, 103–113. [Google Scholar] [CrossRef]
- Bränning, C.; Håkansson, Å.; Ahrné, S.; Jeppsson, B.; Molin, G.; Nyman, M. Blueberry Husks and Multi-Strain Probiotics Affect Colonic Fermentation in Rats. Br. J. Nutr. 2008, 101, 859–870. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Jo, K.; Bae, G.Y.; Cho, K.; Park, S.S.; Suh, H.J.; Hong, K.-B. An Anthocyanin-Enriched Extract from Vaccinium Uliginosum Improves Signs of Skin Aging in UVB-Induced Photodamage. Antioxidants 2020, 9, 844. [Google Scholar] [CrossRef]
- Páscoa, R.N.M.J.; Gomes, M.J.; Sousa, C. Antioxidant Activity of Blueberry (Vaccinium Spp.) Cultivar Leaves: Differences across the Vegetative Stage and the Application of Near Infrared Spectroscopy. Molecules 2019, 24, 3900. [Google Scholar] [CrossRef] [PubMed]
- Morazzoni, P.; Bombardelli, E. Vaccinium myrtillus L. Fitoterapia 1996, 68, 3–29. [Google Scholar]
- Mustafa, B.; Hajdari, A.; Pieroni, A.; Pulaj, B.; Koro, X.; Quave, C.L. A Cross-Cultural Comparison of Folk Plant Uses among Albanians, Bosniaks, Gorani and Turks Living in South Kosovo. J. Ethnobiol. Ethnomed. 2015, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Koss-Mikołajczyk, I.; Baranowska, M.; Namieśnik, J.; Bartoszek, A. Determination of Antioxidantactivity of Phytochemicals in Cellular Models by Fluorescence/Luminescence Methods. Postep. Hig. Med. Dosw. 2017, 71, 602–617. [Google Scholar] [CrossRef] [PubMed]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef]
- Šedbarė, R.; Janulis, V.; Pavilonis, A.; Petrikaite, V. Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts. Pharmaceutics 2024, 16, 735. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.-L.; Oksman-Caldentey, K.-M. Bioactive Berry Compounds?Novel Tools against Human Pathogens. Appl. Microbiol. Biotechnol. 2005, 67, 8–18. [Google Scholar] [CrossRef]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Bobinas, C.; Petruskevicius, A.; Klavins, L.; Viskelis, J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries (Vaccinium myrtillus L.). Antioxidants 2022, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, Y.; Wang, J.; Ding, M.; Fan, Z. Antioxidant Activity, Formulation, Optimization and Characterization of an Oil-in-Water Nanoemulsion Loaded with Lingonberry (Vaccinium vitis-idaea L.) Leaves Polyphenol Extract. Foods 2023, 12, 4256. [Google Scholar] [CrossRef]
- CosIng Cosmetic Ingredient Database of the European Commission. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 4 February 2024).
- Thawabteh, A.M.; Jibreen, A.; Karaman, D.; Thawabteh, A.; Karaman, R. Skin Pigmentation Types, Causes and Treatment—A Review. Molecules 2023, 28, 4839. [Google Scholar] [CrossRef]
- García Molina, P.; Saura-Sanmartin, A.; Berna, J.; Teruel, J.A.; Muñoz Muñoz, J.L.; Rodríguez López, J.N.; García Cánovas, F.; García Molina, F. Considerations about the Inhibition of Monophenolase and Diphenolase Activities of Tyrosinase. Characterization of the Inhibitor Concentration Which Generates 50% of Inhibition, Type and Inhibition Constants. A Review. Int. J. Biol. Macromol. 2024, 267, 131513. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Anthocyanin Profile, Antioxidant Activity and Enzyme Inhibiting Properties of Blueberry and Cranberry Juices: A Comparative Study. Food Funct. 2017, 8, 4187–4193. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Paczkowska-Walendowska, M.; Erdem, C.; Paluszczak, J.; Kleszcz, R.; Hoszman-Kulisz, M.; Cielecka-Piontek, J. Anti-Aging Properties of Chitosan-Based Hydrogels Rich in Bilberry Fruit Extract. Antioxidants 2024, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Y.-T.; Wei, X.-Y.; Xie, Y.-Y.; Zhou, T. Preparation, Antioxidant and Tyrosinase Inhibitory Activities of Chitosan Oligosaccharide-Hydroxypyridinone Conjugates. Food Chem. 2023, 420, 136093. [Google Scholar] [CrossRef] [PubMed]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Angelis, A.; Antosiewicz, B.; Sakipova, Z.; Kozhanova, K.; Głowniak, K.; Kukula-Koch, W. Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea Biebersteinii Afan. Extract. Molecules 2021, 26, 964. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Song, K.; Kim, H.G.; Koh, J.-S.; Boo, Y.C. Screening of Plant Extracts for Human Tyrosinase Inhibiting Effects. Int. J. Cosmet. Sci. 2012, 34, 202–208. [Google Scholar] [CrossRef]
- Yang, X.; Wang, W.; Jiang, Q.; Xie, S.; Zhao, P.; Liu, Z.; Zhu, G.; Xu, J.; Wang, J.; Li, Y. Subcritical Water Extraction of Phenolic Compounds from Vaccinium Dunalianum Wight Leaves and Their Antioxidant and Tyrosinase Inhibitory Activities in Vitro. Chem. Biodivers. 2023, 20, e202201099. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, K.; Liu, Z.; Xie, S.; Xu, J.; He, Y.; Zhao, P.; Yang, X. Ultrasonic-Assisted Biphasic Aqueous Extraction of Polyphenols from Vaccinium Dunalianum Leaves: Optimization, Antioxidant, and Tyrosinase Inhibition Activities. Chem. Biodivers. 2024, e202400955. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Lao, Q.-C.; Zhao, P.; Zhu, X.-Y.; Zhu, H.-T.; Luo, X.-L.; Yang, C.-R.; He, J.-H.; Li, C.-Q.; Zhang, Y.-J. 6′- O -Caffeoylarbutin Inhibits Melanogenesis in Zebrafish. Nat. Prod. Res. 2014, 28, 932–934. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
- An, X.; Lv, J.; Wang, F. Pterostilbene Inhibits Melanogenesis, Melanocyte Dendricity and Melanosome Transport through cAMP/PKA/CREB Pathway. Eur. J. Pharmacol. 2022, 932, 175231. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Zuchowska, A.; Zuchowski, A. Collagen—Role in the body and effects of deficiency. Farmakoterapia 2019, 29, 6–10. [Google Scholar]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-Type Cranberry Proanthocyanidins and Uropathogenic Bacterial Anti-Adhesion Activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- La, V.D.; Howell, A.B.; Grenier, D. Anti- Porphyromonas Gingivalis and Anti-Inflammatory Activities of A-Type Cranberry Proanthocyanidins. Antimicrob. Agents Chemother. 2010, 54, 1778–1784. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Żarowski, M.; Plech, T.; Cielecka-Piontek, J. Permeability of Hypogymnia Physodes Extract Component—Physodic Acid through the Blood–Brain Barrier as an Important Argument for Its Anticancer and Neuroprotective Activity within the Central Nervous System. Cancers 2021, 13, 1717. [Google Scholar] [CrossRef]
- Pageon, H.; Técher, M.-P.; Asselineau, D. Reconstructed Skin Modified by Glycation of the Dermal Equivalent as a Model for Skin Aging and Its Potential Use to Evaluate Anti-Glycation Molecules. Exp. Gerontol. 2008, 43, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Tsunenaga, M.; Miyanaga, M.; Ueda, O.; Ogo, M. Oral Intake of Lingonberry and Amla Fruit Extract Improves Skin Conditions in Healthy Female Subjects: A Randomized, Double-blind, Placebo-controlled Clinical Trial. Biotechnol. Appl. Biochem. 2019, 66, 870–879. [Google Scholar] [CrossRef]
- Maya-Cano, D.A.; Arango-Varela, S.; Santa-Gonzalez, G.A. Phenolic Compounds of Blueberries (Vaccinium Spp) as a Protective Strategy against Skin Cell Damage Induced by ROS: A Review of Antioxidant Potential and Antiproliferative Capacity. Heliyon 2021, 7, e06297. [Google Scholar] [CrossRef]
- Borowska, E.J.; Mazur, B.; Gadza, R. Polyphenol, Anthocyanin and Resveratrol Mass Fractions and Antioxidant Properties of Cranberry Cultivars. Food Technol. Biotechnol. 2009, 47, 56. [Google Scholar]
- Toyama, Y.; Fujita, Y.; Toshima, S.; Hirano, T.; Yamasaki, M.; Kunitake, H. Comparison of Proanthocyanidin Content in Rabbiteye Blueberry (Vaccinium virgatum Aiton) Leaves and the Promotion of Apoptosis against HL-60 Promyelocytic Leukemia Cells Using ‘Kunisato 35 Gou’ Leaf Extract. Plants 2023, 12, 948. [Google Scholar] [CrossRef]
- Kim, H.N.; Baek, J.K.; Park, S.B.; Kim, J.D.; Son, H.-J.; Park, G.H.; Eo, H.J.; Park, J.H.; Jung, H.-S.; Jeong, J.B. Anti-Inflammatory Effect of Vaccinium Oldhamii Stems through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-Stimulated RAW264.7 Cells. BMC Complement. Altern. Med. 2019, 19, 291. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-S.; Gu, Q.-H.; Zhang, J.-K.; Tao, J.-H.; Zhao, T.-R.; Cao, J.-X.; Cheng, G.-G.; Lai, G.-F.; Liu, Y.-P. Phenolic Constituents, Antioxidant and Cytoprotective Activities, Enzyme Inhibition Abilities of Five Fractions from Vaccinium Dunalianum Wight. Molecules 2022, 27, 3432. [Google Scholar] [CrossRef] [PubMed]
- Goyali, J.C.; Igamberdiev, A.U.; Debnath, S.C. Morphology, Phenolic Content and Antioxidant Capacity of Lowbush Blueberry (Vaccinium angustifolium Ait.) Plants as Affected by in Vitro and Ex Vitro Propagation Methods. Can. J. Plant Sci. 2013, 93, 1001–1008. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Kielar, P.; Mołoń, M.; Szczepanek, D.; Sowa, I.; Wójciak, M. In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model. Int. J. Mol. Sci. 2023, 24, 4388. [Google Scholar] [CrossRef] [PubMed]
- Marracino, L.; Punzo, A.; Severi, P.; Nganwouo Tchoutang, R.; Vargas-De-la-Cruz, C.; Fortini, F.; Vieceli Dalla Sega, F.; Silla, A.; Porru, E.; Simoni, P.; et al. Fermentation of Vaccinium Floribundum Berries with Lactiplantibacillus Plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function. Nutrients 2022, 14, 1560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dai, X. Antiaging Effect of Anthocyanin Extracts from Bilberry on Natural or UV-Treated Male Drosophila Melanogaster. Curr. Res. Food Sci. 2022, 5, 1640–1648. [Google Scholar] [CrossRef]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac-Vukanović, S.; Maksimović, S.; Žugić, A. Old Plant, New Possibilities: Wild Bilberry (Vaccinium myrtillus L., Ericaceae) in Topical Skin Preparation. Antioxidants 2021, 10, 465. [Google Scholar] [CrossRef]
- Mechikova, G.Y.; Fleishman, M.Y.; Lebed’ko, O.A. Estimation In Vivo of the Antioxidant Activity of Axillary-Blueberry (Vaccinium Axillare Nakai) Fruit under Oxidative Stress. Cell Tissue Biol. 2023, 17, 306–310. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Zheng, J.; Herrera-Balandrano, D.D.; Zhang, X.; Huang, W.; Sui, Z. In Vivo Antioxidant Activity of Rabbiteye Blueberry (Vaccinium Ashei Cv. ‘Brightwell’) Anthocyanin Extracts. J. Zhejiang Univ. Sci. B 2023, 24, 602–616. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Li, Y.; Yuan, K.; Zhang, W.; Cai, D.; Peng, Z.; Hu, Y.; Sun, J.; Bai, W. Bioactivity and Application of Anthocyanins in Skin Protection and Cosmetics: An Extension as a Functional Pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Bucci, P.; Prieto, M.J.; Milla, L.; Calienni, M.N.; Martinez, L.; Rivarola, V.; Alonso, S.; Montanari, J. Skin Penetration and UV -damage Prevention by Nanoberries. J. Cosmet. Dermatol. 2018, 17, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Pambianchi, E.; Hagenberg, Z.; Pecorelli, A.; Grace, M.; Therrien, J.-P.; Lila, M.A.; Valacchi, G. Alaskan Bog Blueberry (Vaccinium Uliginosum) Extract as an Innovative Topical Approach to Prevent UV-Induced Skin Damage. Cosmetics 2021, 8, 112. [Google Scholar] [CrossRef]
- Svobodová, A.; Rambousková, J.; Walterová, D.; Vostálová, J. Protective Effects of Phenolic Fraction of Blue Honeysuckle Fruits against UVA-Induced Damage to Human Keratinocytes. Arch. Dermatol. Res. 2008, 300, 225–233. [Google Scholar] [CrossRef]
- Svobodová, A.; Zdařilová, A.; Vostálová, J. Lonicera Caerulea and Vaccinium myrtillus Fruit Polyphenols Protect HaCaT Keratinocytes against UVB-Induced Phototoxic Stress and DNA Damage. J. Dermatol. Sci. 2009, 56, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Calò, R.; Marabini, L. Protective Effect of Vaccinium myrtillus Extract against UVA- and UVB-Induced Damage in a Human Keratinocyte Cell Line (HaCaT Cells). J. Photochem. Photobiol. B Biol. 2014, 132, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shi, W.; Li, B.; Bai, Y.; Hou, Z. Preharvest and Postharvest UV Radiation Affected Flavonoid Metabolism and Antioxidant Capacity Differently in Developing Blueberries (Vaccinium corymbosum L.). Food Chem. 2019, 301, 125248. [Google Scholar] [CrossRef]
- Bae, J.; Lim, S.S.; Kim, S.J.; Choi, J.; Park, J.; Ju, S.M.; Han, S.J.; Kang, I.; Kang, Y. Bog Blueberry Anthocyanins Alleviate Photoaging in ultraviolet-B Irradiation-induced Human Dermal Fibroblasts. Mol. Nutr. Food Res. 2009, 53, 726–738. [Google Scholar] [CrossRef]
- Pervin, M.; Hasnat, M.A.; Lim, B.O. Antibacterial and Antioxidant Activities of Vaccinium corymbosum L. Leaf Extract. Asian Pac. J. Trop. Dis. 2013, 3, 444–453. [Google Scholar] [CrossRef]
- Findley, K.; Grice, E.A. The Skin Microbiome: A Focus on Pathogens and Their Association with Skin Disease. PLoS Pathog. 2014, 10, e1004436. [Google Scholar] [CrossRef]
- Baba, T.; Bae, T.; Schneewind, O.; Takeuchi, F.; Hiramatsu, K. Genome Sequence of Staphylococcus Aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands. J. Bacteriol. 2008, 190, 300–310. [Google Scholar] [CrossRef]
- Lian, P.Y.; Maseko, T.; Rhee, M.; Ng, K. The Antimicrobial Effects of Cranberry against Staphylococcus aureus. Food Sci. Technol. Int. 2012, 18, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.J.; Alakomi, H.-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.-M.; Puupponen-Pimiä, R.H. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Costa, M.R.; Pereira, M.F.; Pereira, J.O.; Soares, J.C.; Pintado, M.M. Aqueous Extracts of Vaccinium corymbosum as Inhibitors of Staphylococcus Aureus. Food Control 2015, 51, 314–320. [Google Scholar] [CrossRef]
- Chae, J.-W.; Jo, B.-S.; Joo, S.-H.; Ahn, D.-H.; Chun, S.-S.; Cho, Y.-J. Biological and Antimicrobial Activity of Vaccinium oldhami Fruit. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1–6. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.T.; Taylor, P.W. Modulation of β-Lactam Resistance in Staphylococcus Aureus by Catechins and Gallates. Int. J. Antimicrob. Agents 2004, 23, 462–467. [Google Scholar] [CrossRef]
- Doores, S. Organic Acids. In Antimicrobials in Food, 2nd ed.; Marcel Dekker: New York, NY, USA, 1993; pp. 95–136. [Google Scholar]
- Lacombe, A.; Wu, V.C.H.; Tyler, S.; Edwards, K. Antimicrobial Action of the American Cranberry Constituents; Phenolics, Anthocyanins, and Organic Acids, against Escherichia coli O157:H7. Int. J. Food Microbiol. 2010, 139, 102–107. [Google Scholar] [CrossRef]
- Ilić, D.P.; Troter, D.Z.; Stanojević, L.P.; Zvezdanović, J.B.; Vukotić, D.D.; Nikolić, V.D. Cranberry (Vaccinium macrocarpon L.) Fruit Juice from Serbia: UHPLC- DAD-MS/MS Characterization, Antibacterial and Antioxidant Activities. LWT 2021, 146, 111399. [Google Scholar] [CrossRef]
- Miljković, V.M.; Nikolić, G.S.; Zvezdanović, J.; Mihajlov-Krstev, T.; Arsić, B.B.; Miljković, M.N. Phenolic Profile, Mineral Content and Antibacterial Activity of the Methanol Extract of Vaccinium myrtillus L. Not. Bot. Horti Agrobot. 2018, 46, 122–127. [Google Scholar] [CrossRef]
- Georgescu, C.; Frum, A.; Virchea, L.-I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.-G.; Olah, N.K.; Mathe, E.; Mironescu, M. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef]
- Hasan, N.; Nadaf, A.; Imran, M.; Jiba, U.; Sheikh, A.; Almalki, W.H.; Almujri, S.S.; Mohammed, Y.H.; Kesharwani, P.; Ahmad, F.J. Skin Cancer: Understanding the Journey of Transformation from Conventional to Advanced Treatment Approaches. Mol. Cancer 2023, 22, 168. [Google Scholar] [CrossRef]
- Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches. Dermatol. Ther. 2017, 7 (Suppl. S1), 5–19. [Google Scholar] [CrossRef] [PubMed]
- Lami, I.; Wiemer, A.J. Antibody–Drug Conjugates in the Pipeline for Treatment of Melanoma: Target and Pharmacokinetic Considerations. Drugs RD 2024, 24, 129–144. [Google Scholar] [CrossRef]
- Jiminez, V.; Yusuf, N. An Update on Clinical Trials for Chemoprevention of Human Skin Cancer. J. Cancer Metastasis Treat. 2023, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, P.J.; Kurowska, E.; Freeman, D.J.; Chambers, A.F.; Koropatnick, D.J. A Flavonoid Fraction from Cranberry Extract Inhibits Proliferation of Human Tumor Cell Lines. J. Nutr. 2004, 134, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yue, Y.; Shi, H.; Xu, K.; Zhang, C.; Wan, Y.; Feng, S. Bilberry Anthocyanins (Vaccinium myrtillus L.) Induced Apoptosis of B16-F10 Cells and Diminished the Effect of Dacarbazine. Nutr. Cancer 2023, 75, 992–1004. [Google Scholar] [CrossRef]
- Gao, S.-H.; Zhao, T.-R.; Liu, Y.-P.; Wang, Y.-F.; Cheng, G.-G.; Cao, J.-X. Phenolic Constituents, Antioxidant Activity and Neuroprotective Effects of Ethanol Extracts of Fruits, Leaves and Flower Buds from Vaccinium Dunalianum Wight. Food Chem. 2022, 374, 131752. [Google Scholar] [CrossRef]
- Cruz-Martins, N. Molecular Mechanisms of Anti-Inflammatory Phytochemicals 2.0. Int. J. Mol. Sci. 2023, 24, 17443. [Google Scholar] [CrossRef]
- Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders—A Review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef]
- Kim, M.J.; Choung, S.-Y. Mixture of Polyphenols and Anthocyanins from Vaccinium Uliginosum L. Alleviates DNCB-Induced Atopic Dermatitis in NC/Nga Mice. Evid. Based Complement. Altern. Med. 2012, 2012, 461989. [Google Scholar] [CrossRef]
- Pambianchi, E.; Ferrara, F.; Pecorelli, A.; Woodby, B.; Grace, M.; Therrien, J.-P.; Lila, M.A.; Valacchi, G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. Oxidative Med. Cell. Longev. 2020, 2020, 9571490. [Google Scholar] [CrossRef]
- Hong, S.M.; Kang, M.C.; Jin, M.; Lee, T.H.; Lim, B.O.; Kim, S.Y. Fermented Blueberry and Black Rice Containing Lactobacillus Plantarum MG4221: A Novel Functional Food for Particulate Matter (PM 2.5)/Dinitrochlorobenzene (DNCB)-Induced Atopic Dermatitis. Food Funct. 2021, 12, 3611–3623. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects—A Review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.C.; Angers, P.; Léonhart, S.; Ritz, B.W. Anti-Inflammatory and Neuroactive Properties of Selected Fruit Extracts. J. Med. Food 2012, 15, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Nagulsamy, P.; Ponnusamy, R.; Thangaraj, P. Evaluation of Antioxidant, Anti-Inflammatory, and Antiulcer Properties of Vaccinium Leschenaultii Wight: A Therapeutic Supplement. J. Food Drug Anal. 2015, 23, 376–386. [Google Scholar] [CrossRef]
- Widén, C.; Coleman, M.; Critén, S.; Karlgren-Andersson, P.; Renvert, S.; Persson, G. Consumption of Bilberries Controls Gingival Inflammation. Int. J. Mol. Sci. 2015, 16, 10665–10673. [Google Scholar] [CrossRef]
- Sánchez-Villavicencio, M.L.; Vinqvist-Tymchuk, M.; Kalt, W.; Matar, C.; Alarcón Aguilar, F.J.; Escobar Villanueva, M.D.C.; Haddad, P.S. Fermented Blueberry Juice Extract and Its Specific Fractions Have an Anti-Adipogenic Effect in 3 T3-L1 Cells. BMC Complement. Altern. Med. 2017, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Tsirigotis-Maniecka, M. Alginate-, Carboxymethyl Cellulose-, and κ-Carrageenan-Based Microparticles as Storage Vehicles for Cranberry Extract. Molecules 2020, 25, 3998. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.; Zhang, D.; Zhou, F.; Wang, D.; Wei, Y.; Gao, F.; Xie, L.; Jia, G.; Wu, W.; et al. Blueberry Anthocyanins: Protection against Ageing and Light-Induced Damage in Retinal Pigment Epithelial Cells. Br. J. Nutr. 2012, 108, 16–27. [Google Scholar] [CrossRef]
- Ogawa, K.; Tsuruma, K.; Tanaka, J.; Kakino, M.; Kobayashi, S.; Shimazawa, M.; Hara, H. The Protective Effects of Bilberry and Lingonberry Extracts against UV Light-Induced Retinal Photoreceptor Cell Damage in Vitro. J. Agric. Food Chem. 2013, 61, 10345–10353. [Google Scholar] [CrossRef]
Phytochemical/Class | References | Phytochemical/Class | References |
---|---|---|---|
Phenolic | Terpenes and terpenoids | ||
Phenolic acids | Monoterpenes | ||
Hydroxybenzoic acids | 83. α-Terpinene | [18] | |
1. 1,2-Dihydroxybenzoic acid | [10,19] | 84. (+)-α-Pinene | [18] |
2. 2,4-Dihydroxybenzoic acid | [10,19] | 85. (+)-3-Carene | [18] |
3. 2,5-Dihydroxybenzoic acid | [18] | 86. (−)-Camphene | [18] |
4. 3-Hydroxybenzoic acid | [18] | 87. (+)-Limonene | [18] |
5. 4-Hydroxybenzoic acid | [18] | Monoterpenoids | |
6. Benzoic Acid | [18] | 88. Carvacrol | [18] |
7. p-Anisic acid | [18] | 89. (+)-Linalool | [18] |
8. Gallic Acid | [18] | 90. Nerol | [18] |
9. Salicylic Acid | [18] | 91. Monotropein | [18] |
10. Syringic acid | [18] | 92. 3-Methyl-3-buten-2-ol | [18] |
11. Vanillic Acid | [18] | Triterpenoids | |
Hydroxycinnamic acids | 93. Oleanolic Acid | [18] | |
12. Caffeic Acid | [18] | 94. Ursolic Acid | [11,18] |
13. Chlorogenic Acid | [18] | 95. 3-(p-Coumaroyl)ursolic acid | [18] |
14. Cinnamic Acid | [18] | 96. 3-O-p-hydroxycinnamoyl ursolic acid | [18] |
15. o-Coumaric acid | [10,19] | Carotenoids | |
16. p-Coumaric acid | [18] | 97. Lutein | [11,18] |
17. Ferulic acid | [18] | 98. α-Carotene | [18] |
18. cis-Ferulic acid | [10,19] | 99. β-Carotene | [18] |
19. Sinapinic acid | [18] | 100. ζ-Carotene | [10,11,19] |
Other phenolic acids | Phytosterols | ||
20. Ellagic Acid | [18] | 101. β-Sitosterol | [18] |
21. 4-Hydroxyphenylacetic acid | [18] | 102. Sitogluside | [18] |
Stilbenes | Other terpenoids | ||
22. Resveratrol | [18] | 103. Isophorone | [18] |
23. (Z)-resveratrol | [18] | Non-Phenolic organic acids | |
Flavonoids | 104. Aspartic Acid | [10,19] | |
Anthocyanidins | 105. Citric Acid | [18] | |
24. Cyanidin | [18] | 106. Fumaric Acid | [18] |
25. Cyanidin 3-arabinoside | [18] | 107. Glutamic Acid | [10,19] |
26. Cyanidin 3-galactoside | [18] | 108. Isocitric acid | [18] |
27. Cyanidin 3-glucoside (kuromanin) | [10,19] | 109. Malic Acid | [18] |
28. Pelargonidin 3-galactoside | [18] | 110. Oxalic Acid | [18] |
29. Peonidin | [18] | 111. Parasorbic acid | [18] |
30. Peonidin 3-arabinoside | [11,18] | 112. Phthalic acid | [18] |
31. Peonidin 3-galactoside | [10,11,19] | 113. Quinic acid | [18] |
32. peonidin 3-O-β-D-glucoside betaine | [18] | 114. Shikimic acid | [18] |
33. Peonidin 3-glucoside | [10,19] | 115. Tartaric acid | [18] |
Chalcones | 116. trans-Aconitic acid | [18] | |
34. Phlorizin | [18] | Aminoacids | |
Flavanols | 117. Alanine | [10,19] | |
35. Cianidanol | [18] | 118. Arginine | [10,19] |
36. Cinnamtannin B1 | [10,19] | 119. Aspartic acid | [10,19] |
37. Epicatechin | [11,18] | 120. Cystine | [10,19] |
38. Procyanidin A2 | [10,19] | 121. Glutamic acid | [10,19] |
39. Procyanidin B2 | [11,18] | 122. Glycine | [10,19] |
Flavanones | 123. Histidine | [10,19] | |
40. Prunin | [18] | 124. Isoleucine | [10,19] |
Flavonols | 125. Leucine | [10,19] | |
41. Astragalin | [18] | 126. Lysine | [10,19] |
42. Hyperoside | [18] | 127. Methionine | [10,19] |
43. Kaempferol | [18] | 128. Proline | [10,19] |
44. Myricetin 3-arabinoside | [18] | 129. Serine | [10,19] |
45. Myricetin 3-O-β-D-glucopyranoside | [18] | 130. Threonine | [10,19] |
46. Myricetin 3-O-β-L-galactopyranoside | [18] | 131. Tryptophan | [10,19] |
47. Myricetin 3-O-β-D-xylopyranoside | [18] | 132. Tyrosine | [10,19] |
48. Quercetin | [18] | Sugars | |
49. Quercetin 3-xyloside | [18] | 133. Sucrose | [10,19] |
50. Quercetin 3-O-arabinoside (avicularin) | [18] | Fatty acids | |
51. Isoquercetin | [18] | Fatty alcohols | |
52. Quercitrin | [18] | 134. 1-Octanol | [18] |
53. Rhamnetin | [18] | 135. 3,7-Dimethyl-2,6-octadien-1-ol | [18] |
54. Isorhamnetin | [18] | 136. 1-Decanol | [18] |
55. Isorhamnetin 3-O-β-L-galactopyranoside | [18] | 137. 1-Hexanol | [18] |
Isoflavonoids | 138. 3-Pentanol | [11] | |
56. Genistein | [10,19] | 139. Nonan-1-ol | [18] |
57. Isoflavone | [10,19] | 140. 2-Methyl-3-buten-2-ol | [18] |
Vitamins | 141. (3R)-octan-3-ol | [18] | |
58. Ascorbic Acid (vit.C) | [18] | 142. (S)-(+)-2-Pentanol | [18] |
59. Nicotinic acid (vit.B3) | [10,19] | 143. (S)-(+)-2-Octanol | [18] |
60. Pantothenic Acid (vit.B5) | [10,19] | 144. (3R)-heptan-3-ol | [18] |
61. Pyridoxine (vit.B6) | [10,19] | 145. Oct-1-en-3-ol | [18] |
62. Retinol (vit.A1) | [10,19] | Fatty aldehydes | |
63. Riboflavin (vit.B2) | [10,19] | 146. 2,4-Heptadienal | [18] |
64. Thiamine (vit.B1) | [10,19] | 147. 2-Decenal | [18] |
65. Vitamin K | [10,19] | 148. 2-Heptenal | [18] |
66. α-, β-, γ-, δ-Tocopherol (Vit. E) | [18] | 149. 2-Nonenal | [18] |
67. α-, β-, γ-, δ-Tocotrienol (Vit. E) | [18] | 150. Decanal | [18] |
Miscellaneous phytochemicals | 151. Dodecanal | [18] | |
68. Benzaldehyde | [18] | 152. Hepta-2,4-dienal | [18] |
69. 2-Phenylphenol | [18] | 153. Heptanal | [18] |
70. Benzothiazole | [18] | 154. Hexanal | [18] |
71. Benzyl Benzoate | [18] | 155. Octanal | [18] |
72. Benzyl formate | [18] | 156. Undecanal | [11] |
73. Betaine | [10,19] | Oxygenated hydrocarbons | |
74. Choline | [10,19] | 157. 1,2-Butanedione | [18] |
75. Cystine | [10,19] | 158. 2-Octadecanone | [11] |
76. Ethyl benzoate | [18] | 159. 2-Octanone | [18] |
77. Eugenol | [18] | 160. 2-Pentadecanone | [18] |
78. Indene | [18] | 161. 2-Tridecanone | [18] |
79. Methyl benzoate | [18] | 162. 6-Methyl-5-hepten-2-one | [18] |
80. Phenol | [18] | Fatty esters | |
81. Phenylboronic acid | [11] | 163. Ethyl butyrate | [18] |
82. Vacciniin | [18] | 164. Monoethyl maleate | [18] |
Species | Ingredient (INCI) | Function in Cosmetic |
---|---|---|
Vaccinium angustifolium | VACCINIUM ANGUSTIFOLIUM FRUIT | Astringent, skin-conditioning |
VACCINIUM ANGUSTIFOLIUM FRUIT EXTRACT | Skin-conditioning, shooting | |
VACCINIUM ANGUSTIFOLIUM FRUIT JUICE | Astringent, skin-conditioning | |
LACTOBACILLUS/LEUCONOSTOC/BLUEBERRY FRUIT EXTRACT FERMENT FILTRATE | Humectant, skin-conditioning | |
VACCINIUM ANGUSTIFOLIUM SEED | Abrasive | |
VACCINIUM ANGUSTIFOLIUM LEAF EXTRACT | Skin-conditioning | |
Vaccinium myrtillus | VACCINIUM MYRTILLUS FRUIT JUICE | Skin-conditioning |
VACCINIUM MYRTILLUS FRUIT WATER | Skin-conditioning | |
VACCINIUM MYRTILLUS FRUIT EXTRACT | Skin-conditioning | |
VACCINIUM MYRTILLUS FRUIT/LEAF EXTRACT | Astringent, tonic, refreshing, skin-conditioning | |
VACCINIUM MYRTILLUS LEAF EXTRACT | Astringent, skin-conditioning, nail-conditioning, hair-conditioning | |
HYDROLYZED VACCINIUM MYRTILLUS LEAF EXTRACT | Skin-protecting | |
VACCINIUM MYRTILLUS LEAF CELL EXTRACT | Skin-conditioning | |
VACCINIUM MYRTILLUS BUD EXTRACT | Antioxidant | |
VACCINIUM MYRTILLUS STEM EXTRACT | Antioxidant, astringent | |
VACCINIUM MYRTILLUS SEED OIL | Skin-conditioning | |
VACCINIUM MYRTILLUS SEED EXTRACT | Skin-conditioning | |
VACCINIUM MYRTILLUS SEEDCAKE POWDER | Abrasive, skin-conditioning | |
POLYESTER-22 (the polymer formed by the reaction of Octyldodecanol, dimer dilinoleyl alcohol, Succinic Acid and Vaccinium Myrtillus Seed Oil) | Skin-conditioning, emollient | |
Vaccinium uliginosum | VACCINIUM ULIGINOSUM BERRY EXTRACT | Skin-conditioning |
Vaccinium macrocarpon | VACCINIUM MACROCARPON FRUIT | Skin-conditioning |
VACCINIUM MACROCARPON FRUIT EXTRACT | Astringent | |
VACCINIUM MACROCARPON FRUIT JUICE | Skin-conditioning | |
VACCINIUM MACROCARPON FRUIT WATER | Fragrance, perfuming | |
VACCINIUM MACROCARPON FRUIT POWDER | Antioxidant | |
LACTOBACILLUS/CRANBERRY FRUIT FERMENT EXTRACT | Antioxidant | |
VACCINIUM MACROCARPON SEED | Abrasive | |
VACCINIUM MACROCARPON SEED OIL | Skin-conditioning | |
VACCINIUM MACROCARPON SEEDCAKE POWDER | Skin-conditioning | |
VACCINIUM MACROCARPON SEED POWDER | Abrasive | |
HYDROGENATED CRANBERRY SEED OIL | Skin-conditioning, emollient | |
PEG-8 CRANBERRIATE (Fatty acids, cranberry (Vaccinium macrocarpon) seed oil, ethoxylated (8 mol EO average molar ratio) | Surfactant—Emulsifying | |
Vaccinium dunalianum | VACCINIUM DUNALIANUM LEAF EXTRACT | Skin-conditioning |
Vaccinium oxycoccos | VACCINIUM OXYCOCCOS FRUIT EXTRACT | Skin-conditioning |
VACCINIUM OXYCOCCOS FRUIT WATER | Skin-conditioning | |
VACCINIUM OXYCOCCOS SEED EXTRACT | Skin-conditioning | |
VACCINIUM OXYCOCCOS SEEDCAKE | Skin-conditioning | |
Vaccinium virgatum | VACCINIUM VIRGATUM FRUIT JUICE | Humectant, skin-conditioning |
VACCINIUM VIRGATUM LEAF EXTRACT | Humectant, skin-conditioning | |
VACCINIUM VIRGATUM STEM EXTRACT | Antioxidant | |
VACCINIUM VIRGATUM CALLUS EXTRACT | Antioxidant, humectant, anti-sebum, hair-conditioning, skin-protecting | |
Vaccinium oldhamii | VACCINIUM OLDHAMII FRUIT EXTRACT | Skin-conditioning |
Vaccinium vitis-idaea | VACCINIUM VITIS-IDAEA FRUIT EXTRACT | Antioxidant |
VACCINIUM VITIS-IDAEA FRUIT JUICE | Skin-conditioning | |
VACCINIUM VITIS-IDAEA FRUIT WATER | Fragrance, skin-conditioning | |
SACCHAROMYCES/VACCINIUM VITIS-IDAEA FRUIT FERMENT EXTRACT | Bleaching, skin-conditioning | |
HYDROLYZED VACCINIUM VITIS-IDAEA FRUIT | Skin-conditioning | |
VACCINIUM VITIS-IDAEA LEAF EXTRACT | Astringent, skin-conditioning, tonic | |
VACCINIUM VITIS-IDAEA LEAF PROTOPLASTS | Antioxidant, humectant, skin-conditioning | |
VACCINIUM VITIS-IDAEA SEED OIL | Antioxidant, emollient, skin-conditioning, skin-protecting | |
VACCINIUM VITIS-IDAEA SEEDCAKE POWDER | Abrasive, Exfoliating | |
Vaccinium corymbosum | VACCINIUM CORYMBOSUM FRUIT | Skin-conditioning |
VACCINIUM CORYMBOSUM FRUIT EXTRACT | Skin-conditioning | |
VACCINIUM CORYMBOSUM FRUIT WATER | Skin-conditioning | |
VACCINIUM CORYMBOSUM SEED | Abrasive, skin-conditioning | |
VACCINIUM CORYMBOSUM SEED OIL | Antioxidant, skin-conditioning, emollient |
Vaccinium Species | Experimental Model | Results | Reference |
---|---|---|---|
Vaccinium macrocarpon fruit juice (lyophylised) | Tyrosinase inhibition | 78% inhibition for 1 mg/mL IC50 = 0.1064 ± 0.03630 µg/mL | [23] |
Vaccinium myrtillus fruit juice (lyophylised) | Tyrosinase inhibition | 58% inhibition for 1 mg/mL; IC50 = 0.4814 ± 0.09839 µg/mL | |
Vaccinium myrtillus | Tyrosinase inhibition | H2O extract 0.25 mg/mL ca. 10% inhibition Met extract 0.25 mg/mL ca. 25% inhibition Met-H2O extract 0.25 mg/mL: 20% inhibition Ace-H2O extract at 0.25% mg/mL ca. 45% inhibition (IC50 = 2.21 ± 0.09 mg/mL) | [24] |
Vaccinium corymbosum | Tyrosinase inhibition | Met-H2O extract 0.25 mg/mL: 20% inhibition Ace-H2O extract at 0.25% mg/mL ca. 45% inhibition H2O and Met extract at 0.25 mg/mL—no inhibitory activity | |
Vaccinium bracteatum and isolated compound p-coumaric acid (PCA) | Mushroom tyrosinase inhibition HEK239 cells expressing human tyrosinase MelanoDerm skin model with melanocytes | The extract at 80 µg/mL inhibited human TYR by ca. 50% but did not inhibit mushroom TYR PCA was identified as the most active inhibitor of human TYR PCA at 5 mM reduced the melanin content in MelanoDerm tissues by ca. 13% | [27] |
Subcritical water extract (SWE) and hot water extract (HWE) from V. dunalianum leaves | Monophenolase and diphenolase inhibitory assay | Monophenolase inhibitory activity: SWE: IC50 = 11.81 ± 0.52 μg/mL HWE: IC50 = and 24.50 ± 1.78 μg/mL Kojic acid IC50 = 9.33 ± 0.66 μg/mL Diphenolase inhibitory activity: SWE: IC50 = 21.17 ± 1.83 μg/mL HWE IC50 = 86.98 ± 3.46 μg/mL kojic acid: IC50 = 76.63 ± 4.71 μg/mL | [28] |
6′-O-caffeoylarbutin isolated from aerial parts of Vaccinium dunalianum | Zebrafish melanogenesis assay | IC20: 63.89 mM for 6′-O-caffeoylarbutin 244.6 mM for arbutin The concentration required to prevent melanin production in zebrafish 60 mM for 6′-O-caffeoylarbutin 100 mM for arbutin | [30] |
Pterostilbene isolated from various Vaccinium berries | B16F10 melanogenesis assay Zebrafish melanogenesis assay Human skin tissue explants | Concentration of pterostilbene effectively inhibiting melanin formation: 3 mM in B16F10 and zebrafish melanogenesis assays 10 mM in human skin explant experiments ↓ melanocyte dendritic development ↓ melanosome transport ↓ cAMP/PKA/CREB signal pathway | [32] |
Vaccinium Species | Experimental Model (Cell Line/Enzyme/ Animal etc.) | Dose of Extract/Purified Compound | Results | Reference |
---|---|---|---|---|
Vaccinium angustifolium | Type I bovine collagen | 5% extract (water/propylene glycol 40%) from Cosmetochem | inhibition of the glycation process by 76% | [37] |
In vitro reconstructed skin (Cell line KPH84) Staining of β1 integrin | AGE decline | |||
ELISA—MMP-1 | Reduces the amount of MMP-1 induced by ribose in the medium of reconstructed skin | |||
Vaccinium myrtillus | Hyaluronidase | 0.05 mg/ml fruit extract (water/acetone 1:1) | Inhibitory activity was >90% IC50 [mg hydrogel] was 116.26 ± 26.65 | |
0.5% extract evaporated from acetone-water mixtures (1:1 v/v) + 3.0% chitosan MMW | [24] | |||
Vaccinium uliginosum | Hairless Mice (SKH-1) | Extract sample with ethanol, no exact dose | Anti-wrinkle effect | [10] |
Vaccinium macrocarpon | Collagenase from Porphyromonas gingivalis | 100 µg/mL AC-PAC—isolated from fruit | Greatest inhibitory effect—88.7% ± 8.5% | [35] |
Vaccinium vitis-idaea | Women 35–50 years old | LAE double—water extract from lingonberries and amla fruits | Increased skin thickness by 120 µm Skin elasticity: Superficial—2x larger Deep—5x greater | [38] |
Vaccinium corymbosum | Hyaluronidase | 0.05 mg/mL fruit extract (water/acetone 1:1) | The inhibitory activity was >90% | [24] |
Species | Antioxidant Activitity | Type of Assay | Reference |
---|---|---|---|
V. myrtillus | 668.5 mg/100g | Folin-Ciocalteu | |
45.4 µmol TE */g | FRAP | [18] | |
83.45 µmol TE/g | ABTS | ||
V. vitis-idaea | 63.58% ± 2.95% | DPPH | [19] |
V. uliginosum | IC50 = 2.44 ± 0.09 mg/mL | DPPH | |
IC50 = 0.20 ± 0.00 mM | FRAP | [10] | |
V. corymbosum | 39.6–272.8 mg GAE */g | Folin-Ciocalteu | [11] |
22.6–124.8 mM TE/g | ABTS | ||
V. macrocarpon | 296.3 mg/100 g | Folin-Ciocalteu | |
50.52 mmol TE/g | DPPH | [40] | |
13.08 µmol TE/g | ABTS | ||
V. oxycoccos | 288.5 mg/100 g | Folin-Ciocalteu | |
39.6 mmol TE/g | DPPH | [40] | |
16.4 µmol TE/g | ABTS | ||
V. virgatum | 144–444 mg GAE/g | Folin-Ciocalteu | [41] |
2369 µmol TE/g | DPPH | ||
V. dunalifolium | 0.91 ± 0.04 nmol TE/g | FRAP | |
0.44 ± 0.03 nmol TE/g | DPPH | [43] | |
12.85 ± 0.23 nmol TE/g | ABTS | ||
V. angustifolium | 34.2–42.7 mg GAE/g | Folin-Ciocalteu | [44] |
Vaccinium Species | Experimental Model (Cell Line/Enzyme/ Animal etc.) | Dose of Extract/Purified Compound | Results | Reference |
---|---|---|---|---|
Vaccinium uliginosum (anthocyanin-rich fruit extract) | Human dermal fibroblasts | 5 and 10 mg/L | ↑ cell viability ↓ ROS generation following UVB exposure ↓ DNA damage ↓ collagen degradation ↑ procollagen synthesis ↓ NFκB nuclear translocation and MAPK activation ↓ IL-6 and IL-8 induced by UVB | [58] |
Vaccinium uliginosum (polyphenol-enriched fruit extract) | Human ex vivo skin explants | 100 µg/mL; topic application | ↓ 4HNE ↓ HO-1 ↓ COX2 ↓ AhR ↓ COX2 ↑ structural proteins filaggrin and involucrin in response to UV exposure | [53] |
Vaccinium uliginosum (anthocyanin-enriched extract) | Hairless mice (SKH-1, 4-week-old male) | Oral administration, no data on the dose | ↓ epidermal thickness and collagen degradation ↓ MMP2, 3, 9 ↓ hyaluronidase ↑ TIMP1 and TIMP3 ↑ COL1a1 ↑ SOD1, CAT, GPx ↓ p-ERK, p-JNK, p-p38 following UV-exposure, in comparison with control mice (no extract administration) | [10] |
Vaccinium myrtillus (anthocyanin-rich fruit extract) | HaCaT human keratinocytes | 5–50 mg/L | ↓ ROS ↓ lipid peroxidation ↓ glutathione depletion in response to UVA radiation following pre-treatment (1 h) or post-treatment (4 h) | [54] |
Vaccinium myrtillus (polyphenolic-rich fruit extract) | HaCaT human keratinocytes | 5–50 mg/L | ↑ cell viability ↓ caspase-3 and 9 activation ↓ RONS ↓ DNA damage ↓ IL-6 release In response to UVB radiation following pre-treatment (1 h) or post-treatment (4 h) | [55] |
Vaccinium myrtillus extract | HaCaT keratinocytes | 320 µg/mL | ↓ UVB-induced cytotoxicity, genotoxicity and lipid peroxidation ↓ UVA-induced genotoxicity, ROS and apoptosis | [56] |
Vaccinium myrtillus fruit extract (“nanoberries”) | HaCaT keratinocytes | 0.31–4.38 mg/mL | ↑ viability in response to UVA, UVB and UVC exposure | [52] |
Bacterial Strain | Vaccinium Species | Experimental Model | Dose of Extract/Purified Compound | Results | Reference |
---|---|---|---|---|---|
Staphylococcus aureus ACTT25923 | Vaccinium macrocarpon, Vaccinium myrtillus | Inhibition of bacterial culture growth [%] | 1 mL of juice | V. macrocarpon: 12.9 and 14.8% inhibition after 24 and 48 h, respectively V. myrtillus: 4.6 and 6.0%, respectively | [62] |
Staphylococcus aureus E-045 | Bilberry (Vaccinium myrtillus) | Liquid culture analysis | 1 mg/mL | V. myrtillus—strong inhibition | [63] |
Staphylococcus aureus | Vaccinium corymbosum fruit and leaf | MIC values | - | Leaf: 12.5 mg/mL Fruit: 50 mg/mL | [64] |
Propionibacterium acnes | Vaccinium oldhami | Circular zone inhibition assay | 200 µg/mL | 16 mm clear zone | [65] |
Pseudomonas aeruginosa | Vaccinium macrocarpon, Vaccinium oxycoccos | Circular zone inhibition assay | 15 mg/mL | Slight activity | [16] |
Pseudomonas aeruginosa | Vaccinium macrocarpon | Circular zone inhibition assay | 60 µL of juice | 19 +/− 0.8 mm inhibition zone | [69] |
Pseudomonas aeruginosa ATCC 9027 | Vaccinium myrtillus | MIC/MBC assay | - | 31.5/126.0 mg/mL | [70] |
Candida albicans | Vaccinium myrtillus | Circular zone inhibition assay | 20 µL of undiluted hydroalcoholic extract (0.5 g in 10 mL) | Weak activity ca. 8 mm | [71] |
Vaccinium Species | Skin-Lightening | Anti-Aging | Anti-Oxidant | UV-Protective | Anti-Microbial | Chemo-Preventive | Anti-Inflammatory |
---|---|---|---|---|---|---|---|
V. macrocarpon | + [23] | + [40] | + [16,62,69] | + [76] | + [85] | ||
V. myrtillus | + [23,24] | + [24] | + [18] | + [52,56,59,60] | + [62,63,70] | + [77] | + [81,86] |
V. corymbosum | + [24] | + [24] | + [11] | + [64] | + [82,83,85,87] | ||
V. bracteatum | + [27] | ||||||
V. dunalianum | + [28,30] | + [43] | |||||
V. angustifolium | + [37] | + [44] | |||||
V. uliginosum | + [10] | + [10] | + [10,53,58] | + [81] | |||
V. vitis-idaea | + [38] | + [19] | + [84] | ||||
V. oxycoccos | + [40] | + [16] | |||||
V. virgatum | + [41] | ||||||
V. florinundum | + [46] | ||||||
V. axillare | + [49] | ||||||
V. aslei | + [50] | ||||||
V. oldhamii | + [65] |
+Skin | +Tyrosinase or Melanin | +Anti-Aging | +Melanoma | +UV | +Skin + Inflammation | +Antioxidant | +Antimicrobial | Total Number | |
---|---|---|---|---|---|---|---|---|---|
Vaccinium angustifolium | 48 OP, 2 RP | 8 OP | 7 OP | 2 OP | 77 OP | 4 OP | 604 OP | 165 OP | 1981 |
Vaccinium myrtillus | 23 OP, 1 RP | 3 OP | 1 OPa | 2 OP | 30 OP | 3 OP | 233 OP | 57 OP | 665 |
Vaccinium macrocarpon | 8 OP, 2 RP | 1 OP | 2 OP | 0 OP | 22 OP | 0 OP | 261 OP | 306 OP | 1139 |
Vaccinium uliginosum | 48 OP 2 RP | 9 OP | 7 OP | 2 OP | 81 OP | 4 OP | 598 OP | 160 OP | 1996 |
Vaccinium dunalianum | 2 OP | 4 OP | 0 OP | 0 OP | 0 OP | 0 OP | 8 OP | 3 OP | 18 |
Vacciniumoxycoccos | 0 OP | 0 OP | 0 OP | 0 OP | 1 OPa | 0 OP | 8 OP | 8 OP | 37 |
Vacciniumvirgatum | 46 OP, 2 RP | 8 OP | 7 OP | 2 OP | 76 OP | 4 OP | 590 OP | 157 OP | 1935 |
Vacciniumoldhamii | 0 OP | 0 OP | 0 OP | 0 OP | 0 OP | 0 OP | 3 OP | 1 OPa | 10 |
Vacciniumvitis-idaea | 3 OP | 0 OP | 2 OP | 2 OP | 12 OP | 0 OP | 74 OP | 37 OP | 249 |
Vaccinium corymbosum | 53 OP 2 RP | 9 OP | 8 OP | 2 OP | 79 OP | 4 OP | 620 OP | 162 OP | 2052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukula-Koch, W.; Dycha, N.; Lechwar, P.; Lasota, M.; Okoń, E.; Szczeblewski, P.; Wawruszak, A.; Tarabasz, D.; Hubert, J.; Wilkołek, P.; et al. Vaccinium Species—Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules 2024, 14, 1110. https://doi.org/10.3390/biom14091110
Kukula-Koch W, Dycha N, Lechwar P, Lasota M, Okoń E, Szczeblewski P, Wawruszak A, Tarabasz D, Hubert J, Wilkołek P, et al. Vaccinium Species—Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules. 2024; 14(9):1110. https://doi.org/10.3390/biom14091110
Chicago/Turabian StyleKukula-Koch, Wirginia, Natalia Dycha, Paulina Lechwar, Magdalena Lasota, Estera Okoń, Paweł Szczeblewski, Anna Wawruszak, Dominik Tarabasz, Jane Hubert, Piotr Wilkołek, and et al. 2024. "Vaccinium Species—Unexplored Sources of Active Constituents for Cosmeceuticals" Biomolecules 14, no. 9: 1110. https://doi.org/10.3390/biom14091110
APA StyleKukula-Koch, W., Dycha, N., Lechwar, P., Lasota, M., Okoń, E., Szczeblewski, P., Wawruszak, A., Tarabasz, D., Hubert, J., Wilkołek, P., Halabalaki, M., & Gaweł-Bęben, K. (2024). Vaccinium Species—Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules, 14(9), 1110. https://doi.org/10.3390/biom14091110