Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements
Abstract
:1. Introduction
“…a type of MGEs that encode at least one protein that is a major component of the virion encasing the nucleic acid of the respective MGE and therefore the gene encoding the major virion protein itself; or MGEs that are clearly demonstrable to be members of a line of evolutionary descent of such major virion protein-encoding entities” (ICVCN Rule 3.3) [4].
“Viroids are defined operationally by the ICTV as a type of MGEs that are uncoated, small, circular, single-stranded RNAs that do not encode proteins and do not depend on viruses for transmission, and that replicate autonomously through an RNA-RNA rolling-circle mechanism mediated by host enzymes and, in some cases, by cis-acting hammerhead ribozymes; or MGEs that are derived from a viroid in the course of evolution” (ICVCN Rule 3.3);
2. Polydnaviriformidae
“…a type of virus-derived MGEs that have been exapted by their organismal (cellular) hosts to fulfill functions important for the host life cycle; or MGEs that are derived from such entities in the course of evolution” (ICVCN Rule 3.3),
“…MGEs previously classified in the family Polydnaviridae are considered to be viriforms in classification and nomenclature” [4].
3. Gene Transfer Agents
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Kuhn, J.H. Viruses defined by the position of the virosphere within the replicator space. Microbiol. Mol. Biol. Rev. 2021, 85, e0019320. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Dolja, V.V.; Krupovic, M.; Adriaenssens, E.M.; Di Serio, F.; Dutilh, B.E.; Flores, R.; Harrach, B.; Mushegian, A.; Owens, B.; et al. Expand, Amend, and Emend the International Code of Virus Classification and Nomenclature (ICVCN; “the Code”) and the Statutes to Clearly Define the Remit of the ICTV. International Committee on Taxonomy of Viruses (ICTV) TaxoProp 2020.005G.R.Code_and_Statute_Change. Available online: https://ictv.global/filebrowser/download/7146 (accessed on 2 February 2023).
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Davison, A.J.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 2021, 166, 2633–2648. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses, ICTV Code. The International Code of Virus Classification and Nomenclature (ICVCN). March 2021. Available online: https://talk.ictvonline.org/information/w/ictv-information/383/ictv-code (accessed on 2 February 2023).
- Beijerinck, M.W. Over een Contagium vivum fluidum als oorzaak van de Vlekziekte der Tabaksbladen. Verhandelingen 1898, 7, 229–235. [Google Scholar]
- Iwanowsky, D. Über die Mosaikkrankheit der Tabakspflanze. Bull. Acad. Imp. Sci. St.-Pétersbourg. 1892, 35, 67–70. [Google Scholar]
- International Committee on Taxonomy of Viruses, Plenary Session Vote 5 September 1984 in Sendai (MSL #09). 1984. Available online: https://ictv.global/ictv/proposals/Ratification_1984.pdf (accessed on 2 February 2023).
- International Committee on Taxonomy of Viruses, Plenary Session Vote 29 August 1990 in Berlin (MSL #11). 1990. Available online: https://ictv.global/ictv/proposals/Ratification_1990.pdf (accessed on 2 February 2023).
- Herniou, E.A.; Huguet, E.; Thézé, J.; Bézier, A.; Periquet, G.; Drezen, J.-M. When parasitic wasps hijacked viruses: Genomic and functional evolution of polydnaviruses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 20130051. [Google Scholar] [CrossRef]
- Strand, M.R.; Burke, G.R. Polydnavirus-wasp associations: Evolution, genome organization, and function. Curr. Opin. Virol. 2013, 3, 587–594. [Google Scholar] [CrossRef]
- Strand, M.R.; Burke, G.R. Polydnaviruses: Evolution and function. Curr. Issues Mol. Biol. 2020, 34, 163–182. [Google Scholar] [CrossRef]
- Drezen, J.-M.; Leobold, M.; Bézier, A.; Huguet, E.; Volkoff, A.-N.; Herniou, E.A. Endogenous viruses of parasitic wasps: Variations on a common theme. Curr. Opin. Virol. 2017, 25, 41–48. [Google Scholar] [CrossRef]
- Koonin, E.V.; Krupovic, M. The depths of virus exaptation. Curr. Opin. Virol. 2018, 31, 1–8. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Postler, T.S.; Dolja, V.V.; Krupovic, M.; Adriaenssens, E.M.; Di Serio, F.; Dutilh, B.E.; Flores, R.; Harrach, B.; Mushegian, A.; et al. Rename the Family Polydnaviridae (as Polydnaviriformidae), Rename the Genus Bracovirus (as Bracoviriform) and Rename All Polydnaviriformid Species to Comply with the Newly ICTV-Mandated Binomial Format. International Committee on Taxonomy of Viruses (ICTV) TaxoProp 2021.006D.R.Polydnaviriformidae_1renfam_3rensp. 2021. Available online: https://ictv.global/ictv/proposals/2021.006D.R.Polydnaviriformidae_1renfam_3rensp.zip (accessed on 2 February 2023).
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Davison, A.J.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Drezen, J.-M.; Bézier, A.; Burke, G.R.; Strand, M.R. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Curr. Opin. Insect. Sci. 2022, 49, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Thézé, J.; Bézier, A.; Periquet, G.; Drezen, J.M.; Herniou, E.A. Paleozoic origin of insect large dsDNA viruses. Proc. Natl. Acad. Sci. USA 2011, 108, 15931–15935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthier, J.; Drezen, J.-M.; Herniou, E.A. The recurrent domestication of viruses: Major evolutionary transitions in parasitic wasps. Parasitology 2018, 145, 713–723. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses, Taxonomy Browser. Virus Taxonomy: 2021 Release (MSL #37). 2022. Available online: https://ictv.global/taxonomy (accessed on 2 February 2023).
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef]
- Iranzo, J.; Krupovic, M.; Koonin, E.V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 2016, 7, e00978-16. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015, 479–480, 2–25. [Google Scholar] [CrossRef] [PubMed]
- Darboux, I.; Cusson, M.; Volkoff, A.N. The dual life of ichnoviruses. Curr. Opin. Insect. Sci. 2019, 32, 47–53. [Google Scholar] [CrossRef]
- Sharanowski, B.J.; Ridenbaugh, R.D.; Piekarski, P.K.; Broad, G.R.; Burke, G.R.; Deans, A.R.; Lemmon, A.R.; Moriarty Lemmon, E.C.; Diehl, G.J.; Whitfield, J.B.; et al. Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Mol. Phylogenet. Evol. 2021, 156, 107023. [Google Scholar] [CrossRef]
- Lang, A.S.; Westbye, A.B.; Beatty, J.T. The distribution, evolution, and roles of Ggne transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 2017, 4, 87–104. [Google Scholar] [CrossRef]
- Lang, A.S.; Zhaxybayeva, O.; Beatty, J.T. Gene transfer agents: Phage-like elements of genetic exchange. Nat. Rev. Microbiol. 2012, 10, 472–482. [Google Scholar] [CrossRef]
- Westbye, A.B.; O’Neill, Z.; Schellenberg-Beaver, T.; Beatty, J.T. The Rhodobacter capsulatus gene transfer agent is induced by nutrient depletion and the RNAP omega subunit. Microbiol. (Read.) 2017, 163, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Soucy, S.M.; Zhaxybayeva, O. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus. Evol. 2017, 3, vex036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esterman, E.S.; Wolf, Y.I.; Kogay, R.; Koonin, E.V.; Zhaxybayeva, O. Evolution of DNA packaging in gene transfer agents. Virus. Evol. 2021, 7, veab015. [Google Scholar] [CrossRef]
- Marrs, B. Genetic recombination in Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 1974, 71, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Kogay, R.; Koppenhöfer, S.; Beatty, J.T.; Kuhn, J.H.; Lang, A.S.; Zhaxybayeva, O. Formal recognition and classification of gene transfer agents as viriforms. Virus. Evol. 2022, 8, veac100. [Google Scholar] [CrossRef] [PubMed]
- Kogay, R.; Koppenhöfer, S.; Beatty, J.T.; Kuhn, J.H.; Lang, A.S.; Zhaxybayeva, O. Classification of Gene Transfer Agents (GTAs) as Viriforms. International Committee on Taxonomy of Viruses (ICTV) TaxoProp 2022.001G.A.v2.GTA_viriforms. 2022. Available online: https://ictv.global/filebrowser/download/7865 (accessed on 2 February 2023).
- Tomasch, J.; Wang, H.; Hall, A.T.K.; Patzelt, D.; Preusse, M.; Petersen, J.; Brinkmann, H.; Bunk, B.; Bhuju, S.; Jarek, M.; et al. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol. Evol. 2018, 10, 359–369. [Google Scholar] [CrossRef]
- Biers, E.J.; Wang, K.; Pennington, C.; Belas, R.; Chen, F.; Moran, M.A. Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl. Environ. Microbiol. 2008, 74, 2933–2939. [Google Scholar] [CrossRef]
- Nagao, N.; Yamamoto, J.; Komatsu, H.; Suzuki, H.; Hirose, Y.; Umekage, S.; Ohyama, T.; Kikuchi, Y. The gene transfer agent-like particle of the marine phototrophic bacterium Rhodovulum sulfidophilum. Biochem. Biophys. Rep. 2015, 4, 369–374. [Google Scholar] [CrossRef]
- Humphrey, S.B.; Stanton, T.B.; Jensen, N.S.; Zuerner, R.L. Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J. Bacteriol. 1997, 179, 323–329. [Google Scholar] [CrossRef]
- Anderson, B.; Goldsmith, C.; Johnson, A.; Padmalayam, I.; Baumstark, B. Bacteriophage-like particle of Rochalimaea henselae. Mol. Microbiol. 1994, 13, 67–73. [Google Scholar] [CrossRef]
- Umemori, E.; Sasaki, Y.; Amano, K.; Amano, Y. A phage in Bartonella bacilliformis. Microbiol. Immunol. 1992, 36, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kogay, R.; Neely, T.B.; Birnbaum, D.P.; Hankel, C.R.; Shakya, M.; Zhaxybayeva, O. Machine-learning classification suggests that many alphaproteobacterial prophages may instead be gene transfer agents. Genome Biol. Evol. 2019, 11, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.S.; Beatty, J.T. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol. 2007, 15, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.S.; Taylor, T.A.; Beatty, J.T. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J. Mol. Evol. 2002, 55, 534–543. [Google Scholar] [CrossRef]
- George, E.E.; Tashyreva, D.; Kwong, W.K.; Okamoto, N.; Horák, A.; Husnik, F.; Lukeš, J.; Keeling, P.J. Gene transfer agents in bacterial endosymbionts of microbial eukaryotes. Genome Biol. Evol. 2022, 14, evac099. [Google Scholar] [CrossRef]
- Christensen, S.; Serbus, L.R. Gene transfer agents in symbiotic microbes. Results Probl. Cell Differ. 2020, 69, 25–76. [Google Scholar]
- Guy, L.; Nystedt, B.; Toft, C.; Zaremba-Niedzwiedzka, K.; Berglund, E.C.; Granberg, F.; Näslund, K.; Eriksson, A.-S.; Andersson, S.G. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet. 2013, 9, e1003393. [Google Scholar] [CrossRef]
- Rapp, B.J.; Wall, J.D. Genetic transfer in Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 1987, 84, 9128–9130. [Google Scholar] [CrossRef]
- Bertani, G. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 1999, 181, 2992–3002. [Google Scholar] [CrossRef]
- Gaïa, M.; Meng, L.; Pelletier, E.; Forterre, P.; Vanni, C.; Fernandez-Guerra, A.; Jaillon, O.; Wincker, P.; Ogata, H.; Krupovic, M.; et al. Plankton-infecting relatives of herpesviruses clarify the evolutionary trajectory of giant viruses. bioRxiv 2022, bioRxiv:2021.12.27.474232. [Google Scholar]
- Buttler, C.A.; Chuong, E.B. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol. Rev. 2022, 305, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Cordy, B.; Lucia, D.; Fradkin, L.G.; Budnik, V.; Thomson, T. Retrovirus-like gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 2018, 172, 262–274.e11. [Google Scholar] [CrossRef]
- Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X.; Mekhedov, S.L.; Macrae, R.K.; Koonin, E.V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889. [Google Scholar] [CrossRef]
- Pastuzyn, E.D.; Day, C.E.; Kearns, R.B.; Kyrke-Smith, M.; Taibi, A.V.; McCormick, J.; Yoder, N.; Belnap, D.M.; Erlendsson, S.; Morado, D.R.; et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 2018, 172, 275–288.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.D. Arc—an endogenous neuronal retrovirus? Semin. Cell Dev. Biol. 2018, 77, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Cottee, M.A.; Letham, S.C.; Young, G.R.; Stoye, J.P.; Taylor, I.A. Structure of Drosophila melanogaster ARC1 reveals a repurposed molecule with characteristics of retroviral Gag. Sci. Adv. 2020, 6, eaay6354. [Google Scholar] [CrossRef]
- Barreat, J.G.N.; Katzourakis, A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol. 2022, 30, 281–292. [Google Scholar] [CrossRef]
Genus | Species | Viriform | Viriform Name Abbreviation | Host Subfamily | Host Family |
---|---|---|---|---|---|
Bracoviriform | Bracoviriform altitudinis | Chelonus altitudinis bracoviriform | CalBVf | Cheloninae | Braconidae |
Bracoviriform argentifrontis | Ascogaster argentifrons bracoviriform | AaBVf | |||
Bracoviriform blackburni | Chelonus blackburni bracoviriform | CbBVf | |||
Bracoviriform curvimaculati | Chelonus nr. curvimaculatus bracoviriform | CcBVf | |||
Bracoviriform flavitestaceae | Phanerotoma flavitestacea bracoviriform | PfBVf | |||
Bracoviriform inaniti | Chelonus inanitus bracoviriform | CinaBVf | |||
Bracoviriform insularis | Chelonus insularis bracoviriform | CinsBVf | |||
Bracoviriform quadridentatae | Ascogaster quadridentata bracoviriform | AqBVf | |||
Bracoviriform texani | Chelonus texanus bracoviriform | CtBVf | |||
Bracoviriform canadense | Hypomicrogaster canadensis bracoviriform | HcBVf | Microgastrinae | ||
Bracoviriform congregatae | Cotesia congregata bracoviriform | CcBVf | |||
Bracoviriform crassicornis | Apanteles crassicornis bracoviriform | AcBVf | |||
Bracoviriform croceipedis | Microplitis croceipes bracoviriform | McBVf | |||
Bracoviriform demolitoris | Microplitis demolitor bracoviriform | MdBVf | |||
Bracoviriform ectdytolophae | Hypomicrogaster ectdytolophae bracoviriform | HcEVf | |||
Bracoviriform facetosae | Diolcogaster facetosa bracoviriform | DfBVf | |||
Bracoviriform flavicoxis | Glyptapanteles flavicoxis bracoviriform | GflBVf | |||
Bracoviriform flavipedis | Cotesia flavipes bracoviriform | CfBVf | |||
Bracoviriform fumiferanae | Apanteles fumiferanae bracoviriform | AfBVf | |||
Bracoviriform glomeratae | Cotesia glomerata bracoviriform | CgBVf | |||
Bracoviriform hyphantriae | Cotesia hyphantriae bracoviriform | ChBVf | |||
Bracoviriform indiense | Glyptapanteles indiensis bracoviriform | GiBVf | |||
Bracoviriform kariyai | Cotesia kariyai bracoviriform | CkBVf | |||
Bracoviriform liparidis | Glyptapanteles liparidis bracoviriform | GlBVf | |||
Bracoviriform marginiventris | Cotesia marginiventris bracoviriform | CmaBVf | |||
Bracoviriform melanoscelae | Cotesia melanoscela bracoviriform | CmeBVf | |||
Bracoviriform nigricipitis | Cardiochiles nigriceps bracoviriform | CnBVf | |||
Bracoviriform ornigis | Pholetesor ornigis bracoviriform | PoBVf | |||
Bracoviriform paleacritae | Protapanteles paleacritae bracoviriform | PpBVf | |||
Bracoviriform rubeculae | Cotesia rubecula bracoviriform | CrBVf | |||
Bracoviriform schaeferi | Cotesia schaeferi bracoviriform | CsBVf | |||
Ichnoviriform fumiferanae | Glypta fumiferanae ichnoviriform | GfIVf | Banchinae | Ichneumonidae | |
Ichnoviriform | Ichnoviriform acronyctae | Diadegma acronyctae ichnoviriform | DaIVf | Campopleginae | |
Ichnoviriform annulipedis | Hyposoter annulipes ichnoviriform | HaIVf | |||
Ichnoviriform aprilis | Campoletis aprilis ichnoviriform | CaIVf | |||
Ichnoviriform arjunae | Casinaria arjuna ichnoviriform | CarIVf | |||
Ichnoviriform benefactoris | Olesicampe benefactor ichnoviriform | ObIVf | |||
Ichnoviriform eribori | Eriborus terebrans ichnoviriform | EtIVf | |||
Ichnoviriform exiguae | Hyposoter exiguae ichnoviriform | HeIVf | |||
Ichnoviriform flavicinctae | Campoletis flavicincta ichnoviriform | CfIVf | |||
Ichnoviriform forcipatae | Casinaria forcipata ichnoviriform | CfoIVf | |||
Ichnoviriform fugitivi | Hyposoter fugitivus ichnoviriform | HfIVf | |||
Ichnoviriform geniculatae | Olesicampe geniculatae ichnoviriform | OgIVf | |||
Ichnoviriform infestae | Casinaria infesta ichnoviriform | CiIVf | |||
Ichnoviriform interrupti | Diadegma interruptum ichnoviriform | DiIVf | |||
Ichnoviriform lymantriae | Hyposoter lymantriae ichnoviriform | HlIVf | |||
Ichnoviriform montani | Enytus montanus ichnoviriform | X-2Vf | |||
Ichnoviriform pilosuli | Hyposoter pilosulus ichnoviriform | HpIVf | |||
Ichnoviriform rivalis | Hyposoter rivalis ichnoviriform | HrIVf | |||
Ichnoviriform sonorense | Campoletis sonorensis ichnoviriform | CsIVf | |||
Ichnoviriform tenuifemoris | Synetaeris tenuifemur ichnoviriform | StIVf | |||
Ichnoviriform terebrantis | Diadegma terebrans ichnoviriform | DtIVf |
Family | Genus | Species | Viriform | Viriform Name Abbreviation | Host |
---|---|---|---|---|---|
Bartogtaviriformidae | Bartonegtaviriform | Bartonegtaviriform andersoni | Bartonella gene transfer agent | BaGTA | hyphomicrobial alphaproteobacteria |
Brachygtaviriformidae | Brachyspigtaviriform | Brachyspigtaviriform stantoni | Brachyspira hyodysenteriae gene transfer agent | BhGTA | spirochaetotans |
Rhodogtaviriformidae | Dinogtaviriform | Dinogtaviriform tomaschi | Dinoroseobacter shibae gene transfer agent | DsGTA | rhodobacteral alphaproteabacteria |
Rhodobactegtaviriform | Rhodobactegtaviriform marrsi | Rhodobacter capsulatus gene transfer agent | RcGTA | ||
Rhodovulugtaviriform | Rhodovulugtaviriform kikuchii | Rhodovulum sulfidophilum gene transfer agent | RsGTA | ||
Ruegerigtaviriform | Ruegerigtaviriform cheni | Ruegeria pomeroyi gene transfer agent | RpGTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhn, J.H.; Koonin, E.V. Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules 2023, 13, 289. https://doi.org/10.3390/biom13020289
Kuhn JH, Koonin EV. Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules. 2023; 13(2):289. https://doi.org/10.3390/biom13020289
Chicago/Turabian StyleKuhn, Jens H., and Eugene V. Koonin. 2023. "Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements" Biomolecules 13, no. 2: 289. https://doi.org/10.3390/biom13020289
APA StyleKuhn, J. H., & Koonin, E. V. (2023). Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules, 13(2), 289. https://doi.org/10.3390/biom13020289