Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism
Abstract
:1. Introduction
2. Lon
3. ClpP
4. FtsH
5. Proteasome
6. Cross Talk
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neuwald, A.F.; Aravind, L.; Spouge, J.L.; Koonin, E.V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.C.; Trame, C.B.; Tsuruta, H.; Wilbanks, S.M.; Reddy, V.S.; McKay, D.B. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 2000, 103, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickner, S.; Maurizi, M.R.; Gottesman, S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science 1999, 286, 1888–1893. [Google Scholar] [CrossRef] [PubMed]
- Nagy, I.; Tamura, T.; Vanderleyden, J.; Baumeister, W.; De Mot, R. The 20S proteasome of Streptomyces coelicolor. J. Bacteriol. 1998, 180, 5448–5453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, M.J.; Mintseris, J.; Ferreyra, J.; Gygi, S.P.; Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 2008, 322, 1104–1107. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Challis, G.L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 2008, 154, 1555–1569. [Google Scholar] [CrossRef]
- Tucker, A.C.; Escalante-Semerena, J.C. Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans. Mol. Microbiol. 2013, 87, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Swamy, K.H.; Goldberg, A.L. E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 1981, 292, 652–654. [Google Scholar] [CrossRef]
- Ebel, W.; Skinner, M.M.; Dierksen, K.P.; Scott, J.M.; Trempy, J.E. A conserved domain in Escherichia coli Lon protease is involved in substrate discriminator activity. J. Bacteriol. 1999, 181, 2236–2243. [Google Scholar] [CrossRef]
- Amerik, A.K.; Antonov, V.K.; Gorbalenya, A.E.; Kotova, S.A.; Rotanova, T.V.; Shimbarevich, E.V. Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS. Lett. 1991, 287, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, H.; Glockshuber, R. A point mutation within the ATP-binding site inactivates both catalytic functions of the ATP-dependent protease La (Lon) from Escherichia coli. FEBS. Lett. 1994, 356, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roudiak, S.G.; Shrader, T.E. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Biochemistry 1998, 37, 11255–11263. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hsieh, K.Y.; Kuo, C.I.; Lee, S.H.; Pintilie, G.D.; Zhang, K.; Chang, C.I. Complete three-dimensional structures of the Lon protease translocating a protein substrate. Sci. Adv. 2021, 7, eabj7835. [Google Scholar] [CrossRef]
- Ishii, Y.; Amano, F. Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem. J. 2001, 358, 473–480. [Google Scholar] [CrossRef]
- Griffith, K.L.; Shah, I.M.; Wolf, R.E., Jr. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 2004, 51, 1801–1816. [Google Scholar] [CrossRef]
- Sadeghi, A.; Soltani, B.M.; Jouzani, G.S.; Karimi, E.; Nekouei, M.K.; Sadeghizadeh, M. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level. Microbiol. Res. 2014, 169, 232–238. [Google Scholar] [CrossRef]
- Bucca, G.; Brassington, A.M.; Hotchkiss, G.; Mersinias, V.; Smith, C.P. Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol. Microbiol. 2003, 50, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Bucca, G.; Pothi, R.; Hesketh, A.; Möller-Levet, C.; Hodgson, D.A.; Laing, E.E.; Stewart, G.R.; Smith, C.P. Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor. Nucleic. Acids. Res. 2018, 46, 5692–5703. [Google Scholar] [CrossRef] [Green Version]
- Tsilibaris, V.; Maenhaut-Michel, G.; Van Melderen, L. Biological roles of the Lon ATP-dependent protease. Res. Microbiol. 2006, 157, 701–713. [Google Scholar] [CrossRef]
- Sobczyk, A.; Bellier, A.; Viala, J.; Mazodier, P. The lon gene, encoding an ATP-dependent protease, is a novel member of the HAIR/HspR stress-response regulon in actinomycetes. Microbiology 2002, 148, 1931–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whistler, C.A.; Stockwell, V.O.; Loper, J.E. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 2000, 66, 2718–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, Z.; Bayraktar, A.; Tunca, S. One extra copy of lon gene causes a dramatic increase in actinorhodin production by Streptomyces coelicolor A3(2). Curr. Microbiol. 2019, 76, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Gribun, A.; Kimber, M.S.; Ching, R.; Sprangers, R.; Fiebig, K.M.; Houry, W.A. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J. Biol. Chem. 2005, 280, 16185–16196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akopian, T.; Kandror, O.; Raju, R.M.; Unnikrishnan, M.; Rubin, E.J.; Goldberg, A.L. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO. J. 2012, 31, 1529–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Crécy-Lagard, V.; Servant-Moisson, P.; Viala, J.; Grandvalet, C.; Mazodier, P. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol. Microbiol. 1999, 32, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Gominet, M.; Seghezzi, N.; Mazodier, P. Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 2011, 157, 2226–2234. [Google Scholar] [CrossRef]
- Derré, I.; Rapoport, G.; Msadek, T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 1999, 31, 117–131. [Google Scholar] [CrossRef]
- Wawrzynow, A.; Wojtkowiak, D.; Marszalek, J.; Banecki, B.; Jonsen, M.; Graves, B.; Georgopoulos, C.; Zylicz, M. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO. J. 1995, 14, 1867–1877. [Google Scholar] [CrossRef]
- Wickner, S.; Gottesman, S.; Skowyra, D.; Hoskins, J.; McKenney, K.; Maurizi, M.R. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 1994, 91, 12218–12222. [Google Scholar] [CrossRef]
- Maurizi, M.R.; Clark, W.P.; Katayama, Y.; Rudikoff, S.; Pumphrey, J.; Bowers, B.; Gottesman, S. Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 1990, 265, 12536–12545. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Bell, T.A.; Jenni, S.; Stinson, B.M.; Baker, T.A.; Harrison, S.C.; Sauer, R.T. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 2020, 9, e52774. [Google Scholar] [CrossRef]
- Martin, A.; Baker, T.A.; Sauer, R.T. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Mol. Cell 2007, 27, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amor, A.J.; Schmitz, K.R.; Baker, T.A.; Sauer, R.T. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Protein Sci. 2019, 28, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Zhang, Z.; Cronin, M.; Canchaya, C.; Kenny, J.G.; Fitzgerald, G.F.; van Sinderen, D. The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003. J. Bacteriol. 2005, 187, 8411–8426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellier, A.; Mazodier, P. ClgR, a novel regulator of clp and lon expression in Streptomyces. J. Bacteriol. 2004, 186, 3238–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viala, J.; Rapoport, G.; Mazodier, P. The clpP multigenic family in Streptomyces lividans: Conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol. Microbiol. 2000, 38, 602–612. [Google Scholar] [CrossRef]
- Viala, J.; Mazodier, P. ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Mol. Microbiol. 2002, 44, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Bellier, A.; Gominet, M.; Mazodier, P. Post-translational control of the Streptomyces lividans ClgR regulon by ClpP. Microbiology 2006, 152, 1021–1027. [Google Scholar] [CrossRef] [Green Version]
- Bilyk, B.; Kim, S.; Fazal, A.; Baker, T.A.; Seipke, R.F. Regulation of antimycin biosynthesis is controlled by the ClpXP protease. mSphere 2020, 5, e00144-20. [Google Scholar] [CrossRef]
- Levchenko, I.; Grant, R.A.; Wah, D.A.; Sauer, R.T.; Baker, T.A. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell 2003, 12, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Baker, T.A.; Sauer, R.T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of SsrA-tagged substrates. Mol. Cell 2008, 29, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottesman, S.; Roche, E.; Zhou, Y.; Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998, 12, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.M.; Sun, N.; Wang, F.; Luo, S.; Zhou, Z.; Feng, W.H.; Huang, F.L.; Li, Y.Q. Dual positive feedback regulation of protein degradation of an extra-cytoplasmic function sigma factor for cell differentiation in Streptomyces coelicolor. J. Biol. Chem. 2013, 288, 31217–31228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, T.A.; Sauer, R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 2012, 1823, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Levchenko, I.; Seidel, M.; Sauer, R.T.; Baker, T.A. A specificity-enhancing factor for the ClpXP degradation machine. Science 2000, 289, 2354–2356. [Google Scholar] [CrossRef]
- Flynn, J.M.; Neher, S.B.; Kim, Y.I.; Sauer, R.T.; Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 2003, 11, 671–683. [Google Scholar] [CrossRef]
- Flynn, J.M.; Levchenko, I.; Seidel, M.; Wickner, S.H.; Sauer, R.T.; Baker, T.A. Overlapping recognition determinants within the SsrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 2001, 98, 10584–10589. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, Y.; Yamazaki, H.; Kato, J.Y.; Tomono, A.; Horinouchi, S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 2005, 69, 431–439. [Google Scholar] [CrossRef] [Green Version]
- López-García, M.T.; Santamarta, I.; Liras, P. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology 2010, 156, 2354–2365. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, C.F.; Fu, Y.; Chen, X.A.; Li, Y.Q.; Mao, X.M. Dual regulation between the two-component system PhoRP and AdpA regulates antibiotic production in Streptomyces. J. Ind. Microbiol. Biotechnol. 2019, 46, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Guyet, A.; Gominet, M.; Benaroudj, N.; Mazodier, P. Regulation of the clpP1clpP2 operon by the pleiotropic regulator AdpA in Streptomyces lividans. Arch. Microbiol. 2013, 195, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Guyet, A.; Benaroudj, N.; Proux, C.; Gominet, M.; Coppée, J.Y.; Mazodier, P. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism. BMC Microbiol. 2014, 14, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Tai, C.; Deng, Z.; Gan, J.; Oggioni, M.R.; Ou, H.Y. Identification and characterization of chromosomal relBE toxin-antitoxin locus in Streptomyces cattleya DSM46488. Sci. Rep. 2016, 6, 32047. [Google Scholar] [CrossRef] [Green Version]
- Compton, C.L.; Schmitz, K.R.; Sauer, R.T.; Sello, J.K. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS. Chem. Biol. 2013, 8, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Krzywda, S.; Brzozowski, A.M.; Verma, C.; Karata, K.; Ogura, T.; Wilkinson, A.J. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Structure 2002, 10, 1073–1083. [Google Scholar] [CrossRef]
- Langklotz, S.; Baumann, U.; Narberhaus, F. Structure and function of the bacterial AAA protease FtsH. Biochim. Biophys. Acta 2012, 1823, 40–48. [Google Scholar] [CrossRef]
- Bieniossek, C.; Schalch, T.; Bumann, M.; Meister, M.; Meier, R.; Baumann, U. The molecular architecture of the metalloprotease FtsH. Proc. Natl. Acad. Sci. USA 2006, 103, 3066–3071. [Google Scholar] [CrossRef] [Green Version]
- Ogura, T.; Inoue, K.; Tatsuta, T.; Suzaki, T.; Karata, K.; Young, K.; Su, L.H.; Fierke, C.A.; Jackman, J.E.; Raetz, C.R.; et al. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 1999, 31, 833–844. [Google Scholar] [CrossRef]
- Fuhrer, F.; Langklotz, S.; Narberhaus, F. The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol. Microbiol. 2006, 59, 1025–1036. [Google Scholar] [CrossRef]
- Fuhrer, F.; Muller, A.; Baumann, H.; Langklotz, S.; Kutscher, B.; Narberhaus, F. Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease. J. Mol. Biol. 2007, 372, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Bittner, L.M.; Westphal, K.; Narberhaus, F. Conditional proteolysis of the membrane protein YfgM by the FtsH protease depends on a novel N-terminal degron. J. Biol. Chem. 2015, 290, 19367–19378. [Google Scholar] [CrossRef] [Green Version]
- Arends, J.; Thomanek, N.; Kuhlmann, K.; Marcus, K.; Narberhaus, F. In vivo trapping of FtsH substrates by label-free quantitative proteomics. Proteomics 2016, 16, 3161–3172. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, M.; Yura, T.; Tsuchimoto, S.; Fukumori, Y.; Kanemori, M. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J. Bacteriol. 2004, 186, 7474–7480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrist, M.; Narberhaus, F. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. J. Bacteriol. 2005, 187, 3807–3813. [Google Scholar] [CrossRef] [Green Version]
- Yura, T.; Guisbert, E.; Poritz, M.; Lu, C.Z.; Campbell, E.; Gross, C.A. Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc. Natl. Acad. Sci. USA 2007, 104, 17638–17643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrist, M.; Langklotz, S.; Milek, S.; Fuhrer, F.; Narberhaus, F. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma32) contains a turnover element for proteolysis by the FtsH protease. FEMS. Microbiol. Lett. 2009, 290, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, E.; Demple, B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 1994, 13, 138–146. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Yang, H.; Yan, H.; Wen, Y. Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. Microb. Biotechnol. 2022, 15, 561–576. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Q.; Yang, M.; Chen, Z.; Li, J.; Wen, Y. Heat shock repressor HspR directly controls avermectin production, morphological development, and H2O2 stress response in Streptomyces avermitilis. Appl. Environ. Microbiol. 2021, 87, e0047321. [Google Scholar] [CrossRef]
- Busche, T.; Tsolis, K.C.; Koepff, J.; Rebets, Y.; Ruckert, C.; Hamed, M.B.; Bleidt, A.; Wiechert, W.; Lopatniuk, M.; Yousra, A.; et al. Multi-omics and targeted approaches to determine the role of cellular proteases in Streptomyces protein secretion. Front. Microbiol. 2018, 9, 1174. [Google Scholar] [CrossRef] [PubMed]
- Ludke, A.; Kramer, R.; Burkovski, A.; Schluesener, D.; Poetsch, A. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH. BMC Microbiol. 2007, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahne, S.C.; Darwin, K.H. Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome. Curr. Opin. Struct. Biol. 2021, 67, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Nandi, D.; Tahiliani, P.; Kumar, A.; Chandu, D. The ubiquitin-proteasome system. J. Biosci. 2006, 31, 137–155. [Google Scholar] [CrossRef]
- Striebel, F.; Imkamp, F.; Sutter, M.; Steiner, M.; Mamedov, A.; Weber-Ban, E. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 2009, 16, 647–651. [Google Scholar] [CrossRef]
- Festa, R.A.; McAllister, F.; Pearce, M.J.; Mintseris, J.; Burns, K.E.; Gygi, S.P.; Darwin, K.H. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS ONE 2010, 5, e8589. [Google Scholar] [CrossRef]
- Xu, X.; Niu, Y.; Liang, K.; Shen, G.; Cao, Q.; Yang, Y. Analysis of pupylation of Streptomyces hygroscopicus 5008 in vitro. Biochem. Biophys. Res. Commun. 2016, 474, 126–130. [Google Scholar] [CrossRef]
- Elharar, Y.; Roth, Z.; Hecht, N.; Rotkopf, R.; Khalaila, I.; Gur, E. Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system. Proc. Natl. Acad. Sci. USA 2016, 113, E1605–E1614. [Google Scholar] [CrossRef] [Green Version]
- Zerbib, E.; Schlussel, S.; Hecht, N.; Bagdadi, N.; Eichler, J.; Gur, E. The prokaryotic ubiquitin-like protein presents poor cleavage sites for proteasomal degradation. Cell Rep. 2021, 36, 109428. [Google Scholar] [CrossRef]
- Iyer, L.M.; Burroughs, A.M.; Aravind, L. Unraveling the biochemistry and provenance of pupylation: A prokaryotic analog of ubiquitination. Biol. Direct. 2008, 3, 45. [Google Scholar] [CrossRef]
- Guth, E.; Thommen, M.; Weber-Ban, E. Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate. J. Biol. Chem. 2011, 286, 4412–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwin, K.H.; Lin, G.; Chen, Z.; Li, H.; Nathan, C.F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 2005, 55, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, H.; Wang, T.; Pan, H.; Lin, G.; Li, H. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 2010, 29, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.J.; Arora, P.; Festa, R.A.; Butler-Wu, S.M.; Gokhale, R.S.; Darwin, K.H. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 2006, 25, 5423–5432. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, H.; Lin, G.; Tang, C.; Li, D.; Nathan, C.; Darwin, K.H.; Li, H. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 2009, 17, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- De Mot, R.; Schoofs, G.; Nagy, I. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch. Microbiol. 2007, 188, 257–271. [Google Scholar] [CrossRef]
- Compton, C.L.; Fernandopulle, M.S.; Nagari, R.T.; Sello, J.K. Genetic and Proteomic Analyses of Pupylation in Streptomyces coelicolor. J. Bacteriol. 2015, 197, 2747–2753. [Google Scholar] [CrossRef] [Green Version]
- Boubakri, H.; Seghezzi, N.; Duchateau, M.; Gominet, M.; Kofronova, O.; Benada, O.; Mazodier, P.; Pernodet, J.L. The absence of pupylation (prokaryotic ubiquitin-like protein modification) affects morphological and physiological differentiation in Streptomyces coelicolor. J. Bacteriol. 2015, 197, 3388–3399. [Google Scholar] [CrossRef] [Green Version]
- Kuberl, A.; Polen, T.; Bott, M. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin. Proc. Natl. Acad. Sci. USA 2016, 113, 4806–4811. [Google Scholar] [CrossRef] [Green Version]
- Hong, B.; Wang, L.; Lammertyn, E.; Geukens, N.; Van Mellaert, L.; Li, Y.; Anne, J. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology 2005, 151, 3137–3145. [Google Scholar] [CrossRef]
- Xu, W.F.; Fang, J.L.; Bu, Q.T.; Lyu, Z.Y.; Zhu, C.Y.; Sun, C.F.; Zhao, Q.W.; Li, Y.Q. A novel strategy of gene screen based on multi-omics in Streptomyces roseosporus. Appl. Microbiol. Biotechnol. 2022, 106, 3103–3112. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.U.; Weber-Ban, E. The bacterial proteasome at the core of diverse degradation pathways. Front. Mol. Biosci. 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Ziemski, M.; Jomaa, A.; Mayer, D.; Rutz, S.; Giese, C.; Veprintsev, D.; Weber-Ban, E. Cdc48-like protein of actinobacteria (Cpa) is a novel proteasome interactor in mycobacteria and related organisms. eLife 2018, 7, e34055. [Google Scholar] [CrossRef] [PubMed]
- Rivo, Y.B.; Alkarimah, A.; Ramadhani, N.N.; Cahyono, A.W.; Laksmi, D.A.; Winarsih, S.; Fitri, L.E. Metabolite extract of Streptomyces hygroscopicus Hygroscopicus inhibit the growth of Plasmodium berghei through inhibition of ubiquitin-proteasome system. Trop. Biomed. 2013, 30, 291–300. [Google Scholar] [PubMed]
- Frank, E.G.; Ennis, D.G.; Gonzalez, M.; Levine, A.S.; Woodgate, R. Regulation of SOS mutagenesis by proteolysis. Proc. Natl. Acad. Sci. USA 1996, 93, 10291–10296. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.; Rasulova, F.; Maurizi, M.R.; Woodgate, R. Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: In vitro degradation and identification of residues required for proteolysis. Genes Dev. 1998, 12, 3889–3899. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.; Rasulova, F.; Maurizi, M.R.; Woodgate, R. Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: The role of trans recognition in UmuD' stability. EMBO J. 2000, 19, 5251–5258. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.; Stephens, C.; Zweiger, G.; Shapiro, L.; Alley, M.R. Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev. 1996, 10, 1532–1542. [Google Scholar] [CrossRef] [Green Version]
- Jenal, U.; Fuchs, T. An essential protease involved in bacterial cell-cycle control. EMBO J. 1998, 17, 5658–5669. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.M.; Ren, N.N.; Sun, N.; Wang, F.; Zhou, R.C.; Tang, Y.; Li, Y.Q. Proteasome involvement in a complex cascade mediating SigT degradation during differentiation of Streptomyces coelicolor. FEBS Lett. 2014, 588, 608–613. [Google Scholar] [CrossRef]
- Liao, G.; Liu, Q.; Xie, J. Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microb. Cell Fact. 2013, 12, 19. [Google Scholar] [CrossRef] [PubMed]
Compounds | Source | Function |
---|---|---|
Daptomycin | Streptomyces roseosporus | Antibiotics (Gram-positive infections) |
Rapamycin | Streptomyces rapamycinicus | Immunosuppressants/Antifungal agents |
Amphotericin B | Streptomyces nodosus | Antifungal drugs |
Adriamycin | Streptomyces peucetius | Anticancer drugs |
Ivermectin | Streptomyces avermitilis | Antiparasitic drugs |
Ectoine | Halomonas elongate | Bioprotection agents |
Pyoluteorin | Pseudomonas fluorescens Pf-5 | Antibiotics/Antifungal agents |
Actinorhodin | Streptomyces coelicolor | Antibiotics (redox-active) |
Undecylprodigiosin | Streptomyces coelicolor | Antifungal/Antitumor agents (Potential) |
Clavulanic acid | Streptomyces clavuligerus | β-lactamase inhibitor |
Streptomycin | Streptomyces griseus | Antibiotics (Tuberculosis) |
Tunicamycin | Streptomyces hygroscopicus | Antibiotics/Antifungal agents |
ClpXP Substrate | ||
---|---|---|
Location | Protein Name | Sequence |
C-motif-1 | SsrA | LAA |
YdaM | LAA | |
LldD | NAA | |
Gcp | PAA | |
RpIJ | EAA | |
C-motif-2 | MuA | RRKKAI |
YbaQ | RAKKVA | |
PncB | HIKKAS | |
Rsd | RVKHPA | |
PaaA | HARKVA | |
N-motif-1 | AtpD | ATGKI- |
Dps | STAKL- | |
GapA | TIKV- | |
λO | TNTAKI- | |
σS | SQNTLKV- | |
N-motif-2 | DadA | MRVVI-5-V- |
FabB | MKRAV-5-I- | |
IscR | MRLTS-5-V- | |
IscS | MKLPI-5-A- | |
OmpA | MKKTA-5-V- | |
N-motif-3 | Crl | TLPSGHPK- |
DksA | MQEGQNR- | |
GlcB | SQTITQSRLR- | |
KatE | MSQHNEK- | |
FtsH substrate | ||
Location | Protein name | Sequence |
N-motif | YfgM | MEIYENENDQVEAV |
ExbD | MAMHLNENLDDNGEMH | |
YlaC | MTEIQRLLTETIESL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Gao, W.; Bu, Q.; Li, Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022, 12, 1848. https://doi.org/10.3390/biom12121848
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules. 2022; 12(12):1848. https://doi.org/10.3390/biom12121848
Chicago/Turabian StyleXu, Weifeng, Wenli Gao, Qingting Bu, and Yongquan Li. 2022. "Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism" Biomolecules 12, no. 12: 1848. https://doi.org/10.3390/biom12121848
APA StyleXu, W., Gao, W., Bu, Q., & Li, Y. (2022). Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules, 12(12), 1848. https://doi.org/10.3390/biom12121848