The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Brain Slice Preparation
2.3. Electrophysiology
2.4. Cell Selection and Morphology
2.5. Immunohistochemistry
2.6. Materials
2.7. Data Analysis
3. Results
3.1. Localization of Polyamines Spermine and Spermidine (SPM/SPD) in Astrocytes and Polyamine-Sensitive Potassium Inwardly Rectifying Channels Kir2.4 in Neurons
3.2. Determination of Membrane Permeable (Uptake) versus Impermeable Dyes to Study Astrocyte-to-Astrocyte Dye Propagation
3.3. Astrocyte-to-Astrocyte Dye Spreading in Absence and Presence of Polyamines in Glia
3.4. Extent of Dye-Spreading between Astrocytes Located in Stratum Radiatum of Rat CA1 Hippocampus Is Charge- and MW-Dependent and Correlates with the Ratio of Charge to MW: Polyamine-Independent Propagation in the Glial Syncytium
3.5. Spermine Differentially Affects Spreading of Electrically Negative and Neutral Dyes Independently on Membrane Potential
3.6. Extent of Spermine Effect Correlates with the Ratio of Charge and MW of the Dyes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, M.V.L.; Contreras, J.E.; Bukauskas, F.F.; Sáez, J.C. New Roles for Astrocytes: Gap Junction Hemichannels Have Something to Communicate. Trends Neurosci. 2003, 26, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Giaume, C.; Naus, C.C.; Sáez, J.C.; Leybaert, L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol. Rev. 2021, 101, 93–145. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.L.; Khakh, B.S.; Skatchkov, S.N.; Zhou, M.; Lee, C.J.; Rouach, N. New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J. Neurosci. 2015, 35, 13827–13835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Du, Y.; Aten, S.; Terman, D. On the Electrical Passivity of Astrocyte Potassium Conductance. J. Neurophysiol. 2021, 126, 1403–1419. [Google Scholar] [CrossRef] [PubMed]
- Furihata, T.; Anzai, N. Functional Expression of Organic Ion Transporters in Astrocytes and Their Potential as a Drug Target in the Treatment of Central Nervous System Diseases. Biol. Pharm. Bull. 2017, 40, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.-R.; Donnelly, C.R.; Nedergaard, M. Astrocytes in Chronic Pain and Itch. Nat. Rev. Neurosci. 2019, 20, 667–685. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. Fluid Transport in the Brain. Physiol. Rev. 2022, 102, 1025–1151. [Google Scholar] [CrossRef]
- Mills, W.A.; Woo, A.M.; Jiang, S.; Martin, J.; Surendran, D.; Bergstresser, M.; Kimbrough, I.F.; Eyo, U.B.; Sofroniew, M.V.; Sontheimer, H. Astrocyte Plasticity in Mice Ensures Continued Endfoot Coverage of Cerebral Blood Vessels Following Injury and Declines with Age. Nat. Commun. 2022, 13, 1794. [Google Scholar] [CrossRef]
- Peters, D.; Berger, J.; Langnaese, K.; Derst, C.; Madai, V.I.; Krauss, M.; Fischer, K.D.; Veh, R.W.; Laube, G. Arginase and Arginine Decarboxylase—Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS ONE 2013, 8, e66735. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Woodbury-Fariña, M.A.; Eaton, M. The Role of Glia in Stress. Psychiatr. Clin. N. Am. 2014, 37, 653–678. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Antonov, S.M.; Eaton, M.J. Glia and Glial Polyamines. Role in Brain Function in Health and Disease. Biochem. Suppl. Ser. A 2016, 10, 73–98. [Google Scholar] [CrossRef]
- Sigrist, S.J.; Carmona-Gutierrez, D.; Gupta, V.K.; Bhukel, A.; Mertel, S.; Eisenberg, T.; Madeo, F. Spermidine-Triggered Autophagy Ameliorates Memory during Aging. Autophagy 2014, 10, 178–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, H.-G.; Keilhoff, G.; Laube, G.; Dobrowolny, H.; Steiner, J. Polyamines and Polyamine-Metabolizing Enzymes in Schizophrenia: Current Knowledge and Concepts of Therapy. World J. Psychiatry 2021, 11, 1177–1190. [Google Scholar] [CrossRef]
- Malpica-Nieves, C.J.; Rivera, Y.; Rivera-Aponte, D.E.; Phanstiel, O.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. Uptake of Biotinylated Spermine in Astrocytes: Effect of Cx43 SiRNA, HIV-Tat Protein and Polyamine Transport Inhibitor on Polyamine Uptake. Biomolecules 2021, 11, 1187. [Google Scholar] [CrossRef] [PubMed]
- Rieck, J.; Skatchkov, S.N.; Derst, C.; Eaton, M.J.; Veh, R.W. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022, 12, 501. [Google Scholar] [CrossRef]
- Zahedi, K.; Barone, S.; Soleimani, M. Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. Med. Sci. 2022, 10, 38. [Google Scholar] [CrossRef]
- Cervelli, M.; Averna, M.; Vergani, L.; Pedrazzi, M.; Amato, S.; Fiorucci, C.; Rossi, M.N.; Maura, G.; Mariottini, P.; Cervetto, C.; et al. The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022, 10, 1756. [Google Scholar] [CrossRef]
- Kovács, Z.; Skatchkov, S.N.; Veh, R.W.; Szabó, Z.; Németh, K.; Szabó, P.T.; Kardos, J.; Héja, L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front. Cell. Neurosci. 2022, 15, 787319. [Google Scholar] [CrossRef]
- Ma, B.; Buckalew, R.; Du, Y.; Kiyoshi, C.M.; Alford, C.C.; Wang, W.; McTigue, D.D.; Enyeart, J.J.; Terman, D.; Zhou, M. Gap Junction Coupling Confers Isopotentiality on Astrocyte Syncytium. Glia 2016, 64, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Griemsmann, S.; Höft, S.P.; Bedner, P.; Zhang, J.; von Staden, E.; Beinhauer, A.; Degen, J.; Dublin, P.; Cope, D.W.; Richter, N.; et al. Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cereb. Cortex 2015, 25, 3420–3433. [Google Scholar] [CrossRef]
- Laube, G.; Veh, R.W. Astrocytes, Not Neurons, Show Most Prominent Staining for Spermidine/Spermine-like Immunoreactivity in Adult Rat Brain. Glia 1997, 19, 171–179. [Google Scholar] [CrossRef]
- Biedermann, B.; Skatchkov, S.N.; Brunk, I.; Bringmann, A.; Pannicke, T.; Bernstein, H.G.; Faude, F.; Germer, A.; Veh, R.; Reichenbach, A. Spermine/Spermidine Is Expressed by Retinal Glial (Muller) Cells and Controls Distinct K+ Channels of Their Membrane. Glia 1998, 23, 209–220. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Eaton, M.J.; Krusek, J.; Veh, R.W.; Biedermann, B.; Bringmann, A.; Pannicke, T.; Orkand, R.K.; Reichenbach, A. Spatial Distribution of Spermine/Spermidine Content and K(+)-Current Rectification in Frog Retinal Glial (Muller) Cells. Glia 2000, 31, 84–90. [Google Scholar] [CrossRef]
- Benedikt, J.; Inyushin, M.; Kucheryavykh, Y.V.; Rivera, Y.; Kucheryavykh, L.Y.; Nichols, C.G.; Eaton, M.J.; Skatchkov, S.N. Intracellular Polyamines Enhance Astrocytic Coupling. Neuroreport 2012, 23, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Skatchkov, S.N.; Bukauskas, F.F.; Benedikt, J.; Inyushin, M.; Kucheryavykh, Y.V. Intracellular Spermine Prevents Acid-Induced Uncoupling of Cx43 Gap Junction Channels. Neuroreport 2015, 26, 528–532. [Google Scholar] [CrossRef]
- Kucheryavykh, L.Y.; Benedikt, J.; Cubano, L.A.; Skatchkov, S.N.; Bukauskas, F.F.; Kucheryavykh, Y.V. Polyamines Preserve Connexin 43-Mediated Gap Junctional Communication during Intracellular Hypercalcemia and Acidosis. Neuroreport 2017, 28, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.-C.; Wyeth, M.S.; Baltan-Tekkok, S.; Ransom, B.R. Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release. J. Neurosci. 2003, 23, 3588–3596. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Shen, H.; Zhang, J.; Zhu, Y.-G.; Ransom, B.R.; Chen, X.-C.; Ye, Z.-C. Dual Pathways Mediate β-Amyloid Stimulated Glutathione Release from Astrocytes. Glia 2015, 63, 2208–2219. [Google Scholar] [CrossRef]
- Linsambarth, S.; Carvajal, F.J.; Moraga-Amaro, R.; Mendez, L.; Tamburini, G.; Jimenez, I.; Verdugo, D.A.; Gómez, G.I.; Jury, N.; Martínez, P.; et al. Astroglial Gliotransmitters Released via Cx43 Hemichannels Regulate NMDAR-Dependent Transmission and Short-Term Fear Memory in the Basolateral Amygdala. FASEB J. 2022, 36, e22134. [Google Scholar] [CrossRef]
- Kang, J.; Kang, N.; Lovatt, D.; Torres, A.; Zhao, Z.; Lin, J.; Nedergaard, M. Connexin 43 Hemichannels Are Permeable to ATP. J. Neurosci. 2008, 28, 4702–4711. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, G.K.; Cruz, N.F.; Ball, K.K.; Theus, S.A.; Dienel, G.A. Selective Astrocytic Gap Junctional Trafficking of Molecules Involved in the Glycolytic Pathway: Impact on Cellular Brain Imaging. J. Neurochem. 2009, 110, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Gosejacob, D.; Dublin, P.; Bedner, P.; Hüttmann, K.; Zhang, J.; Tress, O.; Willecke, K.; Pfrieger, F.; Steinhäuser, C.; Theis, M. Role of Astroglial Connexin30 in Hippocampal Gap Junction Coupling. Glia 2011, 59, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Kekesi, O.; Ioja, E.; Szabó, Z.; Kardos, J.; Héja, L. Recurrent Seizure-like Events Are Associated with Coupled Astroglial Synchronization. Front. Cell. Neurosci. 2015, 9, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiasa, M.; Miyaji, T.; Haruna, Y.; Takeuchi, T.; Harada, Y.; Moriyama, S.; Yamamoto, A.; Omote, H.; Moriyama, Y. Identification of a Mammalian Vesicular Polyamine Transporter. Sci. Rep. 2014, 4, 6836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inazu, M.; Takeda, H.; Matsumiya, T. Expression and Functional Characterization of the Extraneuronal Monoamine Transporter in Normal Human Astrocytes. J. Neurochem. 2003, 84, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Sala-Rabanal, M.; Li, D.C.; Dake, G.R.; Kurata, H.T.; Inyushin, M.; Skatchkov, S.N.; Nichols, C.G. Polyamine Transport by the Polyspecific Organic Cation Transporters OCT1, OCT2, and OCT3. Mol. Pharm. 2013, 10, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.; Kucheryavykh, L.; Kucheryavykh, Y.; Rivera, A.; Eaton, M.J.; Skatchkov, S.N.; Inyushin, M. Transport Reversal during Heteroexchange: A Kinetic Study. J. Biophys. 2013, 2013, 683256. [Google Scholar] [CrossRef] [Green Version]
- Merali, S.; Barrero, C.A.; Sacktor, N.C.; Haughey, N.J.; Datta, P.K.; Langford, D.; Khalili, K. Polyamines: Predictive Biomarker for HIV-Associated Neurocognitive Disorders. J. AIDS Clin. Res. 2014, 5, 1000312. [Google Scholar] [CrossRef]
- Krauss, M.; Langnaese, K.; Richter, K.; Brunk, I.; Wieske, M.; Ahnert-Hilger, G.; Veh, R.W.; Laube, G. Spermidine Synthase Is Prominently Expressed in the Striatal Patch Compartment and in Putative Interneurones of the Matrix Compartment. J. Neurochem. 2006, 97, 174–189. [Google Scholar] [CrossRef]
- Piletz, J.E.; Klenotich, S.; Lee, K.S.; Zhu, Q.L.; Valente, E.; Collins, M.A.; Jones, V.; Lee, S.N.; Yangzheng, F. Putative Agmatinase Inhibitor for Hypoxic-Ischemic New Born Brain Damage. Neurotox. Res. 2013, 24, 176–190. [Google Scholar] [CrossRef]
- Malpica-Nieves, C.J.; Rivera-Aponte, D.E.; Tejeda-Bayron, F.A.; Mayor, A.M.; Phanstiel, O.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. The Involvement of Polyamine Uptake and Synthesis Pathways in the Proliferation of Neonatal Astrocytes. Amino Acids 2020, 52, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Laube, G.; Bernstein, H.-G.; Wolf, G.; Veh, R.W. Differential Distribution of Spermidine/Spermine-like Immunoreactivity in Neurons of the Adult Rat Brain. J. Comp. Neurol. 2002, 444, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Valentino, T.L.; Lukasiewicz, P.D.; Romano, C. Immunocytochemical Localization of Polyamines in the Tiger Salamander Retina. Brain Res. 1996, 713, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, T.D.; Sturman, J.A.; Gould, R.M.; Ingoglia, N.A. Axonal Transport of Polyamines in Intact and Regenerating Axons of the Rat Sciatic Nerve. J. Neurochem. 1985, 44, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Gilad, G.M.; Gilad, V.H. Novel Polyamine Derivatives as Neuroprotective Agents. J. Pharmacol. Exp. Ther. 1999, 291, 39–43. [Google Scholar]
- Shaw, G.G.; Pateman, A.J. The Regional Distribution of the Polyamines Spermidine and Spermine in Brain. J. Neurochem. 1973, 20, 1225–1230. [Google Scholar] [CrossRef]
- Shaw, G.G. The Polyamines in the Central Nervous System. Biochem. Pharmacol. 1979, 28, 1–6. [Google Scholar] [CrossRef]
- Nishimura, K.; Shiina, R.; Kashiwagi, K.; Igarashi, K. Decrease in Polyamines with Aging and Their Ingestion from Food and Drink. J. Biochem. 2006, 139, 81–90. [Google Scholar] [CrossRef]
- Héja, L.; Nyitrai, G.; Kékesi, O.; Dobolyi, Á.; Szabó, P.; Fiáth, R.; Ulbert, I.; Pál-Szenthe, B.; Palkovits, M.; Kardos, J. Astrocytes Convert Network Excitation to Tonic Inhibition of Neurons. BMC Biol. 2012, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-I.; Ganesan, S.; Luo, S.X.; Wu, Y.-W.; Park, E.; Huang, E.J.; Chen, L.; Ding, J.B. Aldehyde Dehydrogenase 1a1 Mediates a GABA Synthesis Pathway in Midbrain Dopaminergic Neurons. Science 2015, 350, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Leonetti, A.; Baroli, G.; Fratini, E.; Pietropaoli, S.; Marcoli, M.; Mariottini, P.; Cervelli, M. Epileptic Seizures and Oxidative Stress in a Mouse Model Over-Expressing Spermine Oxidase. Amino Acids 2020, 52, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Marcoli, M.; Cervetto, C.; Amato, S.; Fiorucci, C.; Maura, G.; Mariottini, P.; Cervelli, M. Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures. Biomolecules 2022, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Cockroft, K.M.; Meistrell, M.; Zimmerman, G.A.; Risucci, D.; Bloom, O.; Cerami, A.; Tracey, K.J. Cerebroprotective Effects of Aminoguanidine in a Rodent Model of Stroke. Stroke 1996, 27, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Batliwalla, F.; Mocco, J.; Kiss, S.; Huang, J.; Mack, W.; Coon, A.; Eaton, J.W.; Al-Abed, Y.; Gregersen, P.K.; et al. Neuroprotection in Cerebral Ischemia by Neutralization of 3-Aminopropanal. Proc. Natl. Acad. Sci. USA 2002, 99, 5579–5584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noro, T.; Namekata, K.; Kimura, A.; Guo, X.; Azuchi, Y.; Harada, C.; Nakano, T.; Tsuneoka, H.; Harada, T. Spermidine Promotes Retinal Ganglion Cell Survival and Optic Nerve Regeneration in Adult Mice Following Optic Nerve Injury. Cell Death Dis. 2015, 6, e1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, G.E.; Houtkooper, R.H. Identification of Longevity Compounds with Minimized Probabilities of Side Effects. Biogerontology 2020, 21, 709–719. [Google Scholar] [CrossRef]
- Zayas-Santiago, A.; Agte, S.; Rivera, Y.; Benedikt, J.; Ulbricht, E.; Karl, A.; Davila, J.; Savvinov, A.; Kucheryavykh, Y.; Inyushin, M.; et al. Unidirectional Photoreceptor-to-Muller Glia Coupling and Unique K+ Channel Expression in Caiman Retina. PLoS ONE 2014, 9, e97155. [Google Scholar] [CrossRef]
- Shore, L.; McLean, P.; Gilmour, S.K.; Hodgins, M.B.; Finbow, M.E. Polyamines Regulate Gap Junction Communication in Connexin 43-Expressing Cells. Biochem. J. 2001, 357, 489–495. [Google Scholar] [CrossRef]
- Rouach, N.; Koulakoff, A.; Abudara, V.; Willecke, K.; Giaume, C. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission. Science 2008, 322, 1551–1555. [Google Scholar] [CrossRef]
- Kofuji, P.; Newman, E.A. Potassium Buffering in the Central Nervous System. Neuroscience 2004, 129, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Wallraff, A.; Kohling, R.; Heinemann, U.; Theis, M.; Willecke, K.; Steinhauser, C. The Impact of Astrocytic Gap Junctional Coupling on Potassium Buffering in the Hippocampus. J. Neurosci. 2006, 26, 5438–5447. [Google Scholar] [CrossRef] [PubMed]
- Theis, M.; Söhl, G.; Eiberger, J.; Willecke, K. Emerging Complexities in Identity and Function of Glial Connexins. Trends Neurosci. 2005, 28, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Giaume, C.; Koulakoff, A.; Roux, L.; Holcman, D.; Rouach, N. Astroglial Networks: A Step Further in Neuroglial and Gliovascular Interactions. Nat. Rev. Neurosci. 2010, 11, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Chever, O.; Lee, C.-Y.; Rouach, N. Astroglial Connexin43 Hemichannels Tune Basal Excitatory Synaptic Transmission. J. Neurosci. 2014, 34, 11228–11232. [Google Scholar] [CrossRef] [Green Version]
- Benedikt, J.; Kucheryavykh, Y.; Nichols, C.G.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. Spermine differentially affects astrocytic coupling in CA1 hippocampus as assessed by using dyes of different molecular weights and charges. In Proceedings of the 43rd Annual Meeting of the Society for Neuroscience, San Diego, CA, USA, 9–13 November 2013. [Google Scholar]
- Schools, G.P.; Zhou, M.; Kimelberg, H.K. Development of Gap Junctions in Hippocampal Astrocytes: Evidence That Whole Cell Electrophysiological Phenotype Is an Intrinsic Property of the Individual Cell. J. Neurophysiol. 2006, 96, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Djukic, B.; Casper, K.B.; Philpot, B.D.; Chin, L.S.; McCarthy, K.D. Conditional Knock-out of Kir4.1 Leads to Glial Membrane Depolarization, Inhibition of Potassium and Glutamate Uptake, and Enhanced Short-Term Synaptic Potentiation. J. Neurosci. 2007, 27, 11354–11365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiencken-Barger, A.E.; Djukic, B.; Casper, K.B.; McCarthy, K.D. A Role for Connexin43 during Neurodevelopment. Glia 2007, 55, 675–686. [Google Scholar] [CrossRef]
- Kucheryavykh, Y.V.; Shuba, Y.M.; Antonov, S.M.; Inyushin, M.Y.; Cubano, L.; Pearson, W.L.; Kurata, H.; Reichenbach, A.; Veh, R.W.; Nichols, C.G.; et al. Complex Rectification of Muller Cell Kir Currents. Glia 2008, 56, 775–790. [Google Scholar] [CrossRef]
- Cotrina, M.L.; Kang, J.; Lin, J.H.; Bueno, E.; Hansen, T.W.; He, L.; Liu, Y.; Nedergaard, M. Astrocytic Gap Junctions Remain Open during Ischemic Conditions. J. Neurosci. 1998, 18, 2520–2537. [Google Scholar] [CrossRef] [Green Version]
- Xin Liu, G.; Derst, C.; Schlichthörl, G.; Heinen, S.; Seebohm, G.; Brüggemann, A.; Kummer, W.; Veh, R.W.; Daut, J.; Preisig-Müller, R. Comparison of Cloned Kir2 Channels with Native Inward Rectifier K+ Channels from Guinea-Pig Cardiomyocytes. J. Physiol. 2001, 532, 115–126. [Google Scholar] [CrossRef]
- Inyushin, M.; Kucheryaykh, Y.; Kucheryavykh, L.; Sanabria, P.; Jimenez-Rivera, C.; Struganova, I.; Eaton, M.; Skatchkov, S. Membrane Potential and PH-Dependent Accumulation of Decynium-22 (1,1′-Diethyl-2,2′-Cyanine Iodide) Flourencence through OCT Transporters in Astrocytes. Bol. Asoc. Med. Puerto Rico 2010, 102, 5–12. [Google Scholar]
- Cetinkaya, I.; Ciarimboli, G.; Yalçinkaya, G.; Mehrens, T.; Velic, A.; Hirsch, J.R.; Gorboulev, V.; Koepsell, H.; Schlatter, E. Regulation of Human Organic Cation Transporter HOCT2 by PKA, PI3K, and Calmodulin-Dependent Kinases. Am. J. Physiol. Renal Physiol. 2003, 284, F293–F302. [Google Scholar] [CrossRef]
- Nimmerjahn, A.; Kirchhoff, F.; Kerr, J.N.D.; Helmchen, F. Sulforhodamine 101 as a Specific Marker of Astroglia in the Neocortex in Vivo. Nat. Methods 2004, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Schnell, C.; Hagos, Y.; Hülsmann, S. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes. PLoS ONE 2012, 7, e49398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, R.A.; Grutzendler, J. In Vivo Imaging of Oligodendrocytes with Sulforhodamine 101. Nat. Methods 2014, 11, 1081–1082. [Google Scholar] [CrossRef]
- Hanani, M. Lucifer Yellow—An Angel Rather than the Devil. J. Cell. Mol. Med. 2012, 16, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.G.; Lee, S.-J. Polyamines and Potassium Channels: A 25-Year Romance. J. Biol. Chem. 2018, 293, 18779–18788. [Google Scholar] [CrossRef] [Green Version]
- Burnashev, N.; Khodorova, A.; Jonas, P.; Helm, P.J.; Wisden, W.; Monyer, H.; Seeburg, P.H.; Sakmann, B. Calcium-Permeable AMPA-Kainate Receptors in Fusiform Cerebellar Glial Cells. Science 1992, 256, 1566–1570. [Google Scholar] [CrossRef]
- Williams, K. Modulation and Block of Ion Channels: A New Biology of Polyamines. Cell. Signal. 1997, 9, 1–13. [Google Scholar] [CrossRef]
- Mott, D.D.; Washburn, M.S.; Zhang, S.; Dingledine, R.J. Subunit-Dependent Modulation of Kainate Receptors by Extracellular Protons and Polyamines. J. Neurosci. 2003, 23, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Rozov, A.; Burnashev, N. Polyamine-Dependent Facilitation of Postsynaptic AMPA Receptors Counteracts Paired-Pulse Depression. Nature 1999, 401, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Bowie, D. Polyamine-Mediated Channel Block of Ionotropic Glutamate Receptors and Its Regulation by Auxiliary Proteins. J. Biol. Chem. 2018, 293, 18789–18802. [Google Scholar] [CrossRef] [PubMed]
- Rozov, A.; Zakharova, Y.; Vazetdinova, A.; Valiullina-Rakhmatullina, F. The Role of Polyamine-Dependent Facilitation of Calcium Permeable AMPARs in Short-Term Synaptic Enhancement. Front. Cell. Neurosci. 2018, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, A.P.; Cooper, E. Neuronal Nicotinic Acetylcholine Receptors Are Blocked by Intracellular Spermine in a Voltage-Dependent Manner. J. Neurosci. 1998, 18, 4050–4062. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Vijayaraghavan, S. Nicotinic Cholinergic Signaling in Hippocampal Astrocytes Involves Calcium-Induced Calcium Release from Intracellular Stores. Proc. Natl. Acad. Sci. USA 2001, 98, 4148–4153. [Google Scholar] [CrossRef] [Green Version]
- Lalo, U.; Pankratov, Y.; Kirchhoff, F.; North, R.A.; Verkhratsky, A. NMDA Receptors Mediate Neuron-to-Glia Signaling in Mouse Cortical Astrocytes. J. Neurosci. 2006, 26, 2673–2683. [Google Scholar] [CrossRef] [Green Version]
- Ceprian, M.; Fulton, D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int. J. Mol. Sci. 2019, 20, 2450. [Google Scholar] [CrossRef] [Green Version]
- Ahern, G.P.; Wang, X.; Miyares, R.L. Polyamines Are Potent Ligands for the Capsaicin Receptor TRPV1. J. Biol. Chem. 2006, 281, 8991–8995. [Google Scholar] [CrossRef] [Green Version]
- Shigetomi, E.; Tong, X.; Kwan, K.Y.; Corey, D.P.; Khakh, B.S. TRPA1 Channels Regulate Astrocyte Resting Calcium and Inhibitory Synapse Efficacy through GAT-3. Nat. Neurosci. 2011, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Scimemi, A. A TRP among the Astrocytes. J. Physiol. 2013, 591, 9–15. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Thomzig, A.; Eaton, M.J.; Biedermann, B.; Eulitz, D.; Bringmann, A.; Pannicke, T.; Veh, R.W.; Reichenbach, A. Kir Subfamily in Frog Retina: Specific Spatial Distribution of Kir 6.1 in Glial (Müller) Cells. Neuroreport 2001, 12, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, E.Y.; Skatchkov, S.N.; Ermakov, A.M. Structure and Functions of Gap Junctions and Their Constituent Connexins in the Mammalian CNS. Biochem. Suppl. Ser. A 2021, 15, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Kucheryavykh, L.Y.; Rolon-Reyes, K.; Kucheryavykh, Y.V.; Skatchkov, S.N.; Eaton, M.J.; Sanabria, P.; Wessinger, W.D.; Inyushin, M. Glioblastoma Development in Mouse Brain: General Reduction of OCTs and Mislocalization of OCT3 Transporter and Subsequent Uptake of ASP+ Saubstrate to the Nuclei. Neurosci. Neuroeng. 2014, 3, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepsell, H. The SLC22 Family with Transporters of Organic Cations, Anions and Zwitterions. Mol. Aspects Med. 2013, 34, 413–435. [Google Scholar] [CrossRef]
- Jedlitschky, G.; Grube, M.; Mosyagin, I.; Kroemer, H.K.; Vogelgesang, S. Targeting CNS Transporters for Treatment of Neurodegenerative Diseases. Curr. Pharm. Des. 2014, 20, 1523–1533. [Google Scholar] [CrossRef]
- Koepsell, H. Organic Cation Transporters in Health and Disease. Pharmacol. Rev. 2020, 72, 253–319. [Google Scholar] [CrossRef]
- Koepsell, H. Update on Drug-Drug Interaction at Organic Cation Transporters: Mechanisms, Clinical Impact, and Proposal for Advanced in Vitro Testing. Expert Opin. Drug Metab. Toxicol. 2021, 17, 635–653. [Google Scholar] [CrossRef]
- Bennett, M.V.L.; Garré, J.M.; Orellana, J.A.; Bukauskas, F.F.; Nedergaard, M.; Sáez, J.C. Connexin and Pannexin Hemichannels in Inflammatory Responses of Glia and Neurons. Brain Res. 2012, 1487, 3–15. [Google Scholar] [CrossRef] [Green Version]
- De Bock, M.; Wang, N.; Bol, M.; Decrock, E.; Ponsaerts, R.; Bultynck, G.; Dupont, G.; Leybaert, L. Connexin 43 Hemichannels Contribute to Cytoplasmic Ca2+ Oscillations by Providing a Bimodal Ca2+-Dependent Ca2+ Entry Pathway. J. Biol. Chem. 2012, 287, 12250–12266. [Google Scholar] [CrossRef] [Green Version]
- Sáez, J.C.; Vargas, A.A.; Hernández, D.E.; Ortiz, F.C.; Giaume, C.; Orellana, J.A. Permeation of Molecules through Astroglial Connexin 43 Hemichannels Is Modulated by Cytokines with Parameters Depending on the Permeant Species. Int. J. Mol. Sci. 2020, 21, 3970. [Google Scholar] [CrossRef]
- Lin, X.; Veenstra, R.D. Effect of Transjunctional KCl Gradients on the Spermine Inhibition of Connexin40 Gap Junctions. Biophys. J. 2007, 93, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Prado, N.; Bukauskas, F.F. Modulation of Metabolic Communication through Gap Junction Channels by Transjunctional Voltage; Synergistic and Antagonistic Effects of Gating and Ionophoresis. Biochim. Biophys. Acta 2012, 1818, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. Emerging Issues of Connexin Channels: Biophysics Fills the Gap. Q. Rev. Biophys. 2001, 34, 325–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Prado, N.; Chapuis, S.; Panjkovich, A.; Fregeac, J.; Nagy, J.I.; Bukauskas, F.F. Molecular Determinants of Magnesium-Dependent Synaptic Plasticity at Electrical Synapses Formed by Connexin36. Nat. Commun. 2014, 5, 4667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Prado, N.; Briggs, S.W.; Skeberdis, V.A.; Pranevicius, M.; Bennett, M.V.L.; Bukauskas, F.F. PH-Dependent Modulation of Voltage Gating in Connexin45 Homotypic and Connexin45/Connexin43 Heterotypic Gap Junctions. Proc. Natl. Acad. Sci. USA 2010, 107, 9897–9902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiacco, T.A.; McCarthy, K.D. Intracellular Astrocyte Calcium Waves in Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal Neurons. J. Neurosci. 2004, 24, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Guzman, S.J.; Hu, H.; Jonas, P. Active Dendrites Support Efficient Initiation of Dendritic Spikes in Hippocampal CA3 Pyramidal Neurons. Nat. Neurosci. 2012, 15, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, R.D. Control of Cell Proliferation by Polyamine Signaling through Gap Junctions, Feasible or Not? Bioessays 2018, 40, e1800043. [Google Scholar] [CrossRef]
- Musa, H.; Veenstra, R.D. Voltage-Dependent Blockade of Connexin40 Gap Junctions by Spermine. Biophys. J. 2003, 84, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Musa, H.; Fenn, E.; Crye, M.; Gemel, J.; Beyer, E.C.; Veenstra, R.D. Amino Terminal Glutamate Residues Confer Spermine Sensitivity and Affect Voltage Gating and Channel Conductance of Rat Connexin40 Gap Junctions. J. Physiol. 2004, 557, 863–878. [Google Scholar] [CrossRef]
- Gemel, J.; Lin, X.; Veenstra, R.D.; Beyer, E.C. N-Terminal Residues in Cx43 and Cx40 Determine Physiological Properties of Gap Junction Channels, but Do Not Influence Heteromeric Assembly with Each Other or with Cx26. J. Cell Sci. 2006, 119, 2258–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Fenn, E.; Veenstra, R.D. An Amino-Terminal Lysine Residue of Rat Connexin40 That Is Required for Spermine Block. J. Physiol. 2006, 570, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Gemel, J.; Glass, A.; Zemlin, C.W.; Beyer, E.C.; Veenstra, R.D. Connexin40 and Connexin43 Determine Gating Properties of Atrial Gap Junction Channels. J. Mol. Cell. Cardiol. 2010, 48, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilad, G.M.; Gilad, V.H. Overview of the Brain Polyamine-Stress-Response: Regulation, Development, and Modulation by Lithium and Role in Cell Survival. Cell. Mol. Neurobiol. 2003, 23, 637–649. [Google Scholar] [CrossRef]
- Gupta, V.K.; Scheunemann, L.; Eisenberg, T.; Mertel, S.; Bhukel, A.; Koemans, T.S.; Kramer, J.M.; Liu, K.S.; Schroeder, S.; Stunnenberg, H.G.; et al. Restoring Polyamines Protects from Age-Induced Memory Impairment in an Autophagy-Dependent Manner. Nat. Neurosci. 2013, 16, 1453–1460. [Google Scholar] [CrossRef]
- Pegg, A.E. The Function of Spermine. IUBMB Life 2014, 66, 8–18. [Google Scholar] [CrossRef]
- Bellé, N.A.V.; Dalmolin, G.D.; Fonini, G.; Rubin, M.A.; Rocha, J.B.T. Polyamines Reduces Lipid Peroxidation Induced by Different Pro-Oxidant Agents. Brain Res. 2004, 1008, 245–251. [Google Scholar] [CrossRef]
- Soda, K.; Kano, Y.; Chiba, F.; Koizumi, K.; Miyaki, Y. Increased Polyamine Intake Inhibits Age-Associated Alteration in Global DNA Methylation and 1,2-Dimethylhydrazine-Induced Tumorigenesis. PLoS ONE 2013, 8, e64357. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, R.; Sreedharan, S.; Nordenankar, K.; Alsiö, J.; Lindberg, F.A.; Hutchinson, A.; Eriksson, A.; Roshanbin, S.; Ciuculete, D.M.; Klockars, A.; et al. The Polyamine Transporter Slc18b1(VPAT) Is Important for Both Short and Long Time Memory and for Regulation of Polyamine Content in the Brain. PLoS Genet. 2019, 15, e1008455. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.; Schwarz, C.; Benson, G.; Horn, N.; Buchert, R.; Lange, C.; Köbe, T.; Hetzer, S.; Maglione, M.; Michael, E.; et al. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults with Subjective Cognitive Decline (SmartAge)-Study Protocol for a Randomized Controlled Trial. Alzheimers Res. Ther. 2019, 11, 36. [Google Scholar] [CrossRef]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Buttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Viltard, M.; Durand, S.; Pérez-Lanzón, M.; Aprahamian, F.; Lefevre, D.; Leroy, C.; Madeo, F.; Kroemer, G.; Friedlander, G. The Metabolomic Signature of Extreme Longevity: Naked Mole Rats versus Mice. Aging 2019, 11, 4783–4800. [Google Scholar] [CrossRef] [PubMed]
- Enkvetchakul, D.; Ebihara, L.; Nichols, C.G. Polyamine Flux in Xenopus Oocytes through Hemi-Gap Junctional Channels. J. Physiol. 2003, 553, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Yousef, A.; Kaindl, S.; Lee, V.M.; Trojanowski, J.Q. Connexin-43 and Aquaporin-4 Are Markers of Ageing-Related Tau Astrogliopathy (ARTAG)-Related Astroglial Response. Neuropathol. Appl. Neurobiol. 2018, 44, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.I.; Rash, J.E. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering. Cell Commun. Adhes. 2003, 10, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, J.I.; Ionescu, A.-V.; Lynn, B.D.; Rash, J.E. Coupling of Astrocyte Connexins Cx26, Cx30, Cx43 to Oligodendrocyte Cx29, Cx32, Cx47: Implications from Normal and Connexin32 Knockout Mice. Glia 2003, 44, 205–218. [Google Scholar] [CrossRef] [Green Version]
- De Bock, M.; Decrock, E.; Wang, N.; Bol, M.; Vinken, M.; Bultynck, G.; Leybaert, L. The Dual Face of Connexin-Based Astroglial Ca(2+) Communication: A Key Player in Brain Physiology and a Prime Target in Pathology. Biochim. Biophys. Acta 2014, 1843, 2211–2232. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, R.; Wenzel, J.; Schwartzkroin, P.A.; McKhann, G.M.; Janigro, D. Functional Specialization and Topographic Segregation of Hippocampal Astrocytes. J. Neurosci. 1998, 18, 4425–4438. [Google Scholar] [CrossRef] [Green Version]
- Bordey, A.; Sontheimer, H. Postnatal Development of Ionic Currents in Rat Hippocampal Astrocytes in Situ. J. Neurophysiol. 1997, 78, 461–477. [Google Scholar] [CrossRef]
- Landis, D.M. The Early Reactions of Non-Neuronal Cells to Brain Injury. Annu. Rev. Neurosci. 1994, 17, 133–151. [Google Scholar] [CrossRef]
- Tsai, K.L.; Wang, S.M.; Chen, C.C.; Fong, T.H.; Wu, M.L. Mechanism of Oxidative Stress-Induced Intracellular Acidosis in Rat Cerebellar Astrocytes and C6 Glioma Cells. J. Physiol. 1997, 502, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Kusama-Eguchi, K.; Kobayashi, H.; Igarashi, K. Estimation of Polyamine Binding to Macromolecules and ATP in Bovine Lymphocytes and Rat Liver. J. Biol. Chem. 1991, 266, 20803–20809. [Google Scholar] [CrossRef] [PubMed]
- Krauss, M.; Weiss, T.; Langnaese, K.; Richter, K.; Kowski, A.; Veh, R.W.; Laube, G. Cellular and Subcellular Rat Brain Spermidine Synthase Expression Patterns Suggest Region-Specific Roles for Polyamines, Including Cerebellar Pre-Synaptic Function. J. Neurochem. 2007, 103, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Hamon, L.; Savarin, P.; Pastré, D. Polyamine Signal through Gap Junctions: A Key Regulator of Proliferation and Gap-Junction Organization in Mammalian Tissues? Bioessays 2016, 38, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.A.; Stehberg, J. Hemichannels: New Roles in Astroglial Function. Front. Physiol. 2014, 5, 193. [Google Scholar] [CrossRef] [Green Version]
- Haydon, P.G.; Nedergaard, M. How Do Astrocytes Participate in Neural Plasticity? Cold Spring Harb. Perspect. Biol. 2014, 7, a020438. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedikt, J.; Malpica-Nieves, C.J.; Rivera, Y.; Méndez-González, M.; Nichols, C.G.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022, 12, 1812. https://doi.org/10.3390/biom12121812
Benedikt J, Malpica-Nieves CJ, Rivera Y, Méndez-González M, Nichols CG, Veh RW, Eaton MJ, Skatchkov SN. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules. 2022; 12(12):1812. https://doi.org/10.3390/biom12121812
Chicago/Turabian StyleBenedikt, Jan, Christian J. Malpica-Nieves, Yomarie Rivera, Miguel Méndez-González, Colin G. Nichols, Rüdiger W. Veh, Misty J. Eaton, and Serguei N. Skatchkov. 2022. "The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium" Biomolecules 12, no. 12: 1812. https://doi.org/10.3390/biom12121812
APA StyleBenedikt, J., Malpica-Nieves, C. J., Rivera, Y., Méndez-González, M., Nichols, C. G., Veh, R. W., Eaton, M. J., & Skatchkov, S. N. (2022). The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules, 12(12), 1812. https://doi.org/10.3390/biom12121812