Assessment of Occupational Exposure to Indium Dust for Indium-Tin-Oxide Manufacturing Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. ITO Manufacturing Process
2.2. Measurement and Analysis Methods
2.3. Real-Time Aerosol Monitoring
2.4. Transmission Electron Microscopy (TEM) with Energy Dispersive Spectroscopy (EDS)
2.5. Statistics
3. Results
3.1. Indium Concentrations in Personal Samples
3.2. Indium Concentrations in Area Samples
3.3. Total Indium, Respirable Indium, and Indium Nanoparticle Fractions
3.4. Particle Size Distribution Profile and Number Concentration by Sampling Location
3.5. Measurement Results of Direct-Reading Personal Samples (SidePak, Partector)
3.6. TEM Results
4. Discussion
4.1. Levels of Exposure to Indium and Indium Nanoparticles
4.2. Occupational Exposure Limit (OEL) for Indium Nanoparticles
4.3. Indium-Related Lung Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cummings, K.J.; Nakanp, M.; Omae, K.; Takeuchi, K.; Chonan, T.; Xiao, Y.L.; Harley, R.A.; Roggli, V.L.; Hebisawa, A.; Tallaksen, R.J.; et al. Indium lung disease. Chest 2012, 141, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and respirable particle definitions for human health risk assessment. Part. FibreToxicol. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Lison, D.; Laloy, J.; Corazzari, I.; Muller, J.; Rabolli, V.; Panin, N.; Huaux, F.; Fenoglio, I.; Fubini, B. Sintered indium-tin-oxide (ITO) particles: A new pneumotoxicentity. Toxicol. Sci. 2009, 108, 472–481. [Google Scholar] [CrossRef]
- Nakano, M.; Omae, K.; Tanaka, A.; Hirata, M.; Michikawa, T.; Kikuchi, Y.; Yoshioka, N.; Nishiwaki, Y.; Chonan, T. Causal relationship between indium compound inhalation and effects on the lungs. J. Occup. Health 2009, 51, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Bomhard, E.M. The toxicology of indium tin oxide. Environ. Toxicol. Pharmacol. 2016, 45, 282–294. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.; Seok, S.H.; Cho, W.S. Indium oxide (In2O3) nanoparticles induce progressive lung lnjury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch. Toxicol. 2016, 90, 817–828. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeon, S.; Lee, D.K.; Lee, S.; Jeong, J.; Kim, J.S.; Cho, W.S. The early onset and persistent worsening pulmonary alveolar proteinosis in rats by indium oxide nanoparticles. Nanotoxicology 2020, 14, 468–478. [Google Scholar] [CrossRef]
- Choi, S.; Won, Y.L.; Kim, D.; Lee, M.Y.; Choi, Y.J.; Park, J.S.; Kim, H.R.; Jung, J.I.; Lee, S.G.; Kim, E.A. Interstitial lung disorders in the indium workers of korea: An update study for the relationship with biological exposure indices. Am. J. Ind. Med. 2015, 58, 61–68. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health (NIOSH). Method 0500. Particulates, total. In NIOSH Manual of Analytical Methods (NMAM); NIOSH: Cincinnati, OH, USA, 2003. Available online: https://www.cdc.gov/niosh/docs/2003-154/chaps.html (accessed on 10 March 2021).
- National Institute for Occupational Safety and Health (NIOSH). Method 0600. Particulates not otherwise regulated, respirable. In NIOSH Manual of Analytical Methods (NMAM); NIOSH: Cincinnati, OH, USA, 2003. Available online: https://www.cdc.gov/niosh/docs/2003-154/chaps.html (accessed on 10 March 2021).
- Cena, L.G.; Anthony, T.R.; Peters, T.M. A personal nanoparticle respiratory deposition (NRD) sampler. Environ. Sci. Technol. 2011, 45, 6483–6490. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Occupational Safety and Health (NIOSH). Method 7303, ELEMENTS by ICP (Hot Block/HCl/HNO3 Ashing): METHOD 7303. In NIOSH Manual of Analytical Methods (NMAM), 4th ed.; NIOSH: Cincinnati, OH, USA, 2003. Available online: https://www.cdc.gov/niosh/docs/2003-154/chaps.html (accessed on 10 March 2021).
- R’mili, B.; Le, B.; Olivier, L.C.; Dutouquet, C.; Aguerre-Charriol, O.; Frejafon, E. Particle Sampling by TEM Grid Filtration. Aerosol Sci. Technol. 2013, 47, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Jeong, J.; Bae, Y.; Shin, J.; Ma, H.; Lee, N.; Park, S.; Park, D. Workers’ exposure to indium compounds at electronics industry in Korea. Saf. Health Work 2020. [Google Scholar] [CrossRef]
- Higashikubo, I.; Arito, H.; Eitaki, Y.; Ando, K.; Araki, A.; Shimizu, H.; Sakurai, H. Evaluation of personal exposure of workers to indium concentrations in total dust and its respirable fraction at three Japanese indium plants. Ind. Health 2019, 57, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Blackley, B.H.; Gibbs, J.L.; Cummings, K.J.; Stefaniak, A.B.; Park, J.Y.; Stanton, M.; Virji, M.A. A field evaluation of a single sampler for respirable and inhalable indium and dust measurements at an indium-tin oxide manufacturing facility. J. Occup. Environ.Hyg. 2019, 16, 66–77. [Google Scholar] [CrossRef]
- Miyauchi, H.; Minozoe, A.; Tanaka, S.; Tanaka, A.; Hirata, M.; Nakaza, M.; Arito, H.; Eitaki, Y.; Nakano, M.; Omae, K. Assessment of workplace air concentrations of indium dust in an indium-recycling plant. J. Occup. Health 2012, 54, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Cummings, K.J.; Virji, M.A.; Park, J.Y.; Stanton, M.L.; Edwards, N.T.; Trapnell, B.C.; Carey, B.; Stefaniak, A.B.; Kreiss, K. Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers. Am. J. Ind. Med. 2015, 59, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, H.; Yu, I.J. Assessment of nanoparticle exposure in nanosilica handling process: Including characteristics of nanoparticles leaking from a vacuum cleaner. Ind. Health 2014, 52, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kwon, M.; Ji, J.H.; Kang, C.S.; Ahn, K.H.; Han, J.H.; Yu, I.J. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal. Toxicol. 2011, 23, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kim, B.; Kim, H. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities. Ind. Health 2014, 52, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Lee, J.S.; Choi, B.S.; Park, S.Y.; Yoon, J.H.; Kim, H. Ultrafine particle characteristics in a rubber manufacturing factory. Ann. Occup. Hyg. 2013, 57, 728–739. [Google Scholar]
- Ham, S.; Kim, S.; Lee, N.; Kim, P.; Eom, I.; Tsai, P.J.; Lee, K.; Yoon, C. Comparison of nanoparticle exposure levels based on facility type—Small-scale laboratories, large-scale manufacturing workplaces, and unintended nanoparticle-emitting workplaces. Aerosol Air Qual. Res. 2015, 15, 1967–1978. [Google Scholar] [CrossRef] [Green Version]
- Schulte, P.A.; Murashov, V.; Zumwalde, R.; Kuempel, E.D.; Geraci, C.L. Occupational exposure limits for nanomaterials: State of the art. J. Nanopart. Res. 2010, 12, 1971–1987. [Google Scholar] [CrossRef]
- Homma, T.; Ueno, T.; Sekizawa, K.; Tanaka, A.; Hirata, M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J. Occup. Health 2003, 45, 137–139. [Google Scholar] [CrossRef]
- Nakano, M.; Omae, K.; Uchida, K.; Michikawa, T.; Yoshioka, N.; Hirata, M.; Tanaka, A. Five-year cohort study, Enphysematous progression of indium exposed workers. Chest 2014, 146, 1166–1175. [Google Scholar] [CrossRef]
- Amata, A.; Chonan, T.; Omae, K.; Nodera, H.; Terada, J.; Tatsumi, K. High levels of indium exposure relate to progressive emphysematous changes: A 9-year longitudinal surveillance of indium workers. Thorax 2015, 70, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Won, Y.L.; Kim, D.; Yi, G.Y.; Park, J.S.; Kim, E.A. Subclinical interstitial lung damage in workers exposed to indium compounds. Ann. Occup. Environ. Med. 2013, 25, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasawa, S.; Nakano, M.; Miyauchi, H.; Tanaka, S.; Kawasumi, Y.; Higashikubo, I.; Tanaka, A.; Hirata, M.; Omae, K. Personal indium exposure concentration in respirable dusts and serum indium level. Ind. Health 2017, 7, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wet Ball Mill | Indium Concentration (mg/cm3) | Fraction (%) | |||||
---|---|---|---|---|---|---|---|
Workers | in TD 3 | in RD 4 | in NPs 5 | RD/TD | NPs/TD | ||
Manufacturing worker | 1st day | No | 0.0402 | NA 6 | 0.008 × 10−2 | NA | 0.2 |
2nd day | Yes | 0.0684 | NA | 0.010 × 10−2 | NA | 0.1 | |
3rd day | No | 0.0136 | 0.093 × 10−2 | NA | 6.8 | NA | |
Managing workers A 1 | No | 0.0085 | NA | 0.003 × 10−2 | NA | 0.4 | |
Managing workers B 2 | No | 0.0060 | 0.166 × 10−2 | NA | 27.7 | NA |
Location | Sampling Date | Wet Mill | Dust (mg/cm3) | Indium Concentration(mg/cm3) | Fraction (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
TD 1 | RD 2 | in TD | in RD | in NPs 3 | RD/TD | NPs/RD | NPs/TD | |||
Wet Mill | t | No | 0.0434 | 0.0193 | 0.050 × 10−2 | NA | ND 4 | NA | NA | NA |
2nd | Yes | NA | NA | 1.770 × 10−2 | NA | ND | NA | NA | NA | |
3rd | No | NA | NA | 0.010 × 10−2 | 0.007 × 10−2 | ND | 70 | NA | NA | |
Mixer | 1st | No | 0.0632 | 0.0241 | 0.470 × 10−2 | NA | ND | NA | NA | NA |
2nd | No | NA | NA | 1.010 × 10−2 | 0.228 × 10−2 | 0.003 × 10−2 | 22.6 | 1.3 | 0.3 | |
Vibration classifier | 1st | No | 0.0581 | 0.0256 | 0.360 × 10−2 | NA | ND | NA | NA | NA |
2nd | No | NA | NA | 0.870 × 10−2 | 0.095 × 10−2 | 0.004 × 10−2 | 10.9 | 4.2 | 0.5 | |
PC table in corridor | 1st | No | 0.0853 | 0.0198 | NA | NA | NA | NA | NA | NA |
2nd | No | NA | NA | 0.160 × 10−2 | 0.037 × 10−2 | 0.001 × 10−2 | 23.1 | 2.7 | 0.6 | |
End of corridor | NA 4 | NA | NA | 0.080 × 10−2 | 0.019 × 10−2 | NA | 23.8 | NA | NA |
Date | Measurement Points | SMPS 3 | OPS 4 | |||
---|---|---|---|---|---|---|
GM 5 of NC 6 (GSD 7) (range) | Group 8 | Particle Diameter 9 | GM of NC 1 (GSD) (range) | Group | ||
1st day | Workshop 1 | 34,629 (1.12) (26,144–43,170) | 3 | 39 | 1000 (1.13) (758–1367) | 2 |
Corridor | 45,890 (1.20) (37,553–62,275) | 2 | 37 | 1140 (1.08) (1021–1376) | 1 | |
Outdoor | 51,907 (1.76) (22,236–201,191) | 1 | 53 | 1199 (1.06) (1077–1350) | 1 | |
3rd day | Workshop 2 | 23,148 (1.27) (13,819–38,952) | 2 | 82 | 5074 (1.27) (3005–7558) | 1 |
Corridor | 20,117 (1.06) (18,589–22,659) | 3 | 85 | 3602 (1.02) (3464–3702) | 2 | |
Outdoor | 35,351 (1.16) (25,848–45,808) | 1 | 59 | 4053 (1.08) (3558–4486) | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.W.; Cha, W.; Choi, S.; Shin, J.; Choi, B.-S.; Kim, M. Assessment of Occupational Exposure to Indium Dust for Indium-Tin-Oxide Manufacturing Workers. Biomolecules 2021, 11, 419. https://doi.org/10.3390/biom11030419
Kim BW, Cha W, Choi S, Shin J, Choi B-S, Kim M. Assessment of Occupational Exposure to Indium Dust for Indium-Tin-Oxide Manufacturing Workers. Biomolecules. 2021; 11(3):419. https://doi.org/10.3390/biom11030419
Chicago/Turabian StyleKim, Boo Wook, Wonseok Cha, Sungwon Choi, Jungah Shin, Byung-Soon Choi, and Miyeon Kim. 2021. "Assessment of Occupational Exposure to Indium Dust for Indium-Tin-Oxide Manufacturing Workers" Biomolecules 11, no. 3: 419. https://doi.org/10.3390/biom11030419