Biotechnological Interventions for Ginsenosides Production
Abstract
:1. Introduction
2. Medicinal Uses
3. Natural Biosynthesis
4. In Vitro Approaches for Secondary Metabolite Production
4.1. Adventitious Shoot Culture
4.2. Callus Culture, Somatic Embryogenesis, and Regeneration.
4.3. Cell Suspension Culture
4.4. Protoplast Culture
4.5. Bioreactor: Large-Scale Propagation
4.6. In Vitro Mutagenesis
4.7. Induction of Polyploidization
4.8. Hairy Root Culture
5. Conclusions and Future Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical approval
References
- Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res. 2018, 42, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Song, M.; Kim, S.H.; Jang, D.S.; Kim, J.B.; Ha, B.K.; Kim, S.H.; Lee, K.J.; Kang, S.Y.; Jeong, I.Y. The improvement of ginsenoside accumulation in Panax ginseng as a result of γ-irradiation. J. Ginseng Res. 2013, 37, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Wang, L.; Liu, L.; Liang, Y.; Sun, Y.; Wu, J. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep. 2014, 33, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Hemmerlin, A.; Harwood, J.L.; Bach, T.J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Progress Lipid Res. 2012, 51, 95–148. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Jothy, S.L.; Vijayarathna, S.; Kavitha, N.; Oon, C.E.; Chen, Y.; Dharmaraj, S.; Lai, N.S.; Kanwar, J.R. Conventional and non-conventional approach towards the extraction of bioorganic phase. In Bioorganic Phase in Natural Food: An Overview; Mohana Roopan, S., Madhumitha, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 41–57. [Google Scholar]
- Yue, P.Y.K.; Wong, D.Y.L.; Wu, P.K.; Leung, P.Y.; Mak, N.K.; Yeung, H.W.; Liu, L.; Cai, Z.; Jiang, Z.-H.; Fan, T.P.D. The angiosuppressive effects of 20(R)-ginsenoside Rg3. Biochem. Pharm. 2006, 72, 437–445. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, J.H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 2014, 38, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Radad, K.; Gille, G.; Moldzio, R.; Saito, H.; Ishige, K.; Rausch, W.-D. Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPPþ -affected mesencephalic dopaminergic cells. J. Neural Transm. 2004, 111, 37–45. [Google Scholar] [CrossRef]
- Park, E.K.; Choo, M.K.; Kim, E.J.; Han, M.J.; Kim, D.H. Antiallergic activity of ginsenoside Rh2. Biol. Pharm. Bull. 2003, 26, 1581–1584. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.W.; Wong, A.S.T. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Rhule, A.; Navarro, S.; Smith, J.R.; Shepherd, D.M. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J. Etnopharmacol. 2006, 106, 121–128. [Google Scholar] [CrossRef]
- Xue, J.-F.; Liu, Z.-J.; Hu, J.-F.; Chen, H.; Zhang, J.-T.; Chen, N.-H. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphyrolation of synapsis through a cAMP-dependent protein kinase pathway. Brain Res. 2006, 1106, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Rudakewich, M.; Ba, F.; Benishin, C.G. Neurotrophic and neuroprotective actions of ginsenosides Rb1 and Rg1. Planta Med. 2001, 67, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Won, T.J.; Lee, D.I. Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med. 2005, 71, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Nakanishi, K. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Clinical effects of medical ginseng, Korean red ginseng: Specifically, its anti-stress action for prevention of disease. J. Pharmacol. Sci. 2004, 95, 158–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linsefors, L.; Björk, L.; Mosbach, K. Influence of elicitors and mevalonic acid on the biosynthesis of ginsenosides in tissue cultures of Panax ginseng. Biochem. Physiol. Pflanz. 1989, 184, 413–418. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015, 33, 717–735. [Google Scholar] [CrossRef]
- Lee, M.H.; Jeong, J.H.; Seo, J.W.; Shin, C.G.; Kim, Y.S.; In, J.G.; Yang, D.C.; Yi, J.S.; Choi, Y.E. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol. 2004, 45, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Han, J.Y.; Kim, M.J.; Ban, Y.W.; Hwang, H.S.; Choi, Y.E. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2013, 54, 2034–2046. [Google Scholar] [CrossRef]
- Schramek, N.; Huber, C.; Schmidt, S.; Dvorski, S.E.; Knispel, N.; Ostrozhenkova, E.; Eisenreich, W. Biosynthesis of ginsenosides in field-grown Panax ginseng. JSM Biotechnol. Bioeng. 2014, 2, 1033. [Google Scholar]
- Gantait, S.; El-Dawayati, M.M.; Panigrahi, J.; Labrooy, C.; Verma, S.K. The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L. Appl. Microbiol. Biotechnol. 2018, 102, 8229–8259. [Google Scholar] [CrossRef]
- Laloue, M.; Pethe, C. Dynamics of cytokinin metabolism in tobacco cells. In Plant Growth Substances, Proceedings of the 11th International Conference on Plant Growth Substances, Aberystwyth, UK, 12–16th July 1982; Wareing, P.F., Ed.; Academic Press: New York, NY, USA, 1982; pp. 185–195. [Google Scholar]
- Punja, Z.K.; Feeney, M.; Schluter, C.; Tautorus, T. Multiplication and germination of somatic embryos of American ginseng derived from suspension cultures and biochemical and molecular analyses of plantlets. In Vitro Cell. Dev. Biol.-Plant 2004, 40, 329–338. [Google Scholar] [CrossRef]
- Lee, H.Y.; Khorolragchaa, A.; Sun, M.S.; Kim, Y.J.; Kim, Y.J.; Kwon, W.S.; Yang, D.C. Plant regeneration from anther culture of Panax ginseng. Korean J. Plant Resour. 2013, 26, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Gantait, S.; Kundu, S. Neoteric trends in tissue culture-mediated biotechnology of Indian ipecac [Tylophora indica (Burm. f.) Merrill]. 3 Biotech 2017, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Kharwanlang, L.; Das, M.C.; Kumaria, S.; Tandon, P. High frequency somatic embryos induction from the rhizome explant of Panax pseudoginseng Wall. Using thin cell layer section. Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 31–34. [Google Scholar]
- Choi, Y.E.; Jeong, J.H.; Shin, C.K. Hormone-independent embryogenic callus production from ginseng cotyledons using high concentrations of NH4NO3 and progress towards bioreactor production. Plant Cell Tissue Organ Cult. 2003, 72, 229–235. [Google Scholar] [CrossRef]
- Mathur, A.; Mathur, A.K.; Sangwan, R.S.; Gangwar, A.; Uniyal, G.C. Differential morphogenetic responses, ginsenoside metabolism and RAPD patterns of three Panax species. Genet. Resour. Crop Evol. 2003, 50, 245–252. [Google Scholar] [CrossRef]
- Yu, K.W.; Gao, W.Y.; Hahn, E.J.; Paek, K.Y. Effects of macro elements and nitrogen source on adventitious root growth and ginsenoside production in ginseng (Panax ginseng CA Meyer). J. Plant Biol. 2001, 44, 179–184. [Google Scholar] [CrossRef]
- Bonfill, M.; Cusidó, R.M.; Palazón, J.; Piñol, M.T.; Morales, C. Influence of auxins on organogenesis and ginsenoside production in Panax ginseng calluses. Plant Cell Tissue Organ Cult. 2002, 68, 73–78. [Google Scholar] [CrossRef]
- Huang, T.; Gao, W.Y.; Wang, J.; Cao, Y.; Zhao, Y.X.; Huang, L.Q.; Liu, C.X. Selection and optimization of a high-producing tissue culture of Panax ginseng CA Meyer. Acta Physiol. Plant. 2010, 32, 765–772. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yeung, E.C.; Hahn, E.J.; Paek, K.Y. Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng CA Meyer. Biotechnol. Lett. 2007, 29, 1789–1792. [Google Scholar] [CrossRef]
- Nhut, D.T.; Huy, N.P.; Luan, V.Q.; Van Binh, N.; Nam, N.B.; Thuy, L.N.M.; Cuong, L.K. Shoot regeneration and micropropagation of Panax vietnamensis Ha et Grushv. from ex vitro leaf derived callus. African J. Biotechnol. 2011, 10, 19499–19504. [Google Scholar]
- Wang, J.; Liu, H.; Gao, W.Y.; Zhang, L. Comparison of ginsenoside composition in native roots and cultured callus cells of Panax quinquefolium L. Acta Physiol. Plant. 2013, 35, 1363–1366. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Vijaya Sree, N.; Udayasri, P.; Aswani Kumar, V.V.Y.; Ravi, B.B.; Phani, K.Y.; Vijay, V.M. Advancements in the production of secondary metabolites. J. Nat. Prod. 2010, 3, 112–123. [Google Scholar]
- Lee, J.W.; Jo, I.H.; Kim, J.U.; Hong, C.E.; Bang, K.H.; Park, Y.D. Determination of mutagenic sensitivity to gamma rays in ginseng (Panax ginseng) dehiscent seeds, roots, and somatic embryos. Hort. Env. Biotechnol. 2019, 60, 721–731. [Google Scholar] [CrossRef]
- Hussain, M.S.; Fareed, S.; Saba Ansari, M.; Rahman, A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm Bioallied Sci. 2012, 4, 10. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.B.; Li, X.Y.; Piao, X.C.; Jiang, J.; Lian, M.L. Pathogenic fungal elicitors enhance ginsenoside biosynthesis of adventitious roots in Panax quinquefolius during bioreactor culture. Industrial Crop. Prod. 2016, 94, 729–735. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hahn, E.J.; Murthy, H.N.; Paek, K.Y. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol. 2004, 47, 356–360. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.J.; Xu, Y.; Qian, X.; Zhong, J.J. Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl. Microbiol. Biotechnol. 2006, 70, 298–307. [Google Scholar] [CrossRef]
- Yu, K.W.; Gao, W.; Hahn, E.J.; Paek, K.Y. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng CA Meyer. Biochem. Engg. J. 2002, 11, 211–215. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W.Y.; Zhang, J.; Zuo, B.M.; Zhang, L.M.; Huang, L.Q. Production of ginsenoside and polysaccharide by two-stage cultivation of Panax quinquefolium L. cells. Vitr. Cell. Dev. Biol—Plant 2012, 48, 107–112. [Google Scholar] [CrossRef]
- Thanh, N.T.; Anh, H.T.; Yoeup, P.K. Effects of macro elements on biomass and ginsenoside production in cell suspension culture of Ngoc Linh ginseng {Panax vietnamensis Ha et Grushv. Vnu J. Sci. Nat. Sci. Technol. 2008, 24, 248–252. [Google Scholar]
- Jeong, C.S.; Murthy, H.N.; Hahn, E.J.; Lee, H.L.; Paek, K.Y. Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng CA Meyer). Acta Physiol. Plant. 2009, 31, 219–222. [Google Scholar] [CrossRef]
- Smolenskaya, I.N.; Reshetnyak, O.V.; Smirnova, Y.N.; Chernyak, N.D.; Globa, E.B.; Nosov, A.M.; Nosov, A.V. Opposite effects of synthetic auxins, 2, 4-dichlorophenoxyacetic acid and 1-naphthalene acetic acid on growth of true ginseng cell culture and synthesis of ginsenosides. Russian J. Plant Physiol. 2007, 54, 215–223. [Google Scholar] [CrossRef]
- Kochan, E.; Chmiel, A. Dynamics of ginsenoside biosynthesis in suspension culture of Panax quinquefolium. Acta Physiol. Plant. 2011, 33, 911–915. [Google Scholar] [CrossRef]
- Han, L.; Zhou, C.; Shi, J.; Zhi, D.; Xia, G. Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Rep. 2009, 28, 627–638. [Google Scholar] [CrossRef]
- Almusawi, A.H.A.; Sayegh, A.J.; Alshanaw, A.M.; Griffis, J.L. Plantform bioreactor for mass micropropagation of date palm. In Date Palm Biotechnology Protocols; Vol I. Methods in molecular biology; Al-Khayri, J.M., Jain, S.M., Johnson, D., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1637, pp. 251–265. [Google Scholar]
- Kochan, E.; Caban, S.; Szymańska, G.; Szymczyk, P.; Lipert, A.; Kwiatkowski, P.; Sienkiewicz, M. Ginsenoside content in suspension cultures of Panax quinquefolium L. cultivated in shake flasksand stirred-tank bioreactor. Annales Universitatis Mariae Curie-Sklodowska Sectio C–Biol. 2017, 72. [Google Scholar] [CrossRef]
- Marks, D.M. Equipment design considerations for large scale cell culture. Cytotechnology 2003, 42, 21–33. [Google Scholar] [CrossRef]
- Chen, N.; Srinivasa, S.; Leavit, R.I.; Coty, V.F.; Kondis, E. Low-pressure airlift fermentor for single cell protein production. Biotechnol. Bioeng. 1987, 29, 421. [Google Scholar] [CrossRef]
- Kochan, E.; Szymczyk, P.; Kuźma, Ł.; Lipert, A.; Szymańska, G. Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors. Molecules 2017, 22, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmahdi, I.; Baganz, F.; Dixon, K.; Harrop, T.; Sugden, D.; Lye, G.J. pH control in microwell fermentations of S. erythraea CA340: Influence on biomass growth kinetics and erythromycin biosynthesis. Biochem. Engg. J. 2003, 16, 299–310. [Google Scholar] [CrossRef]
- Sivakumar, G.; Yu, K.W.; Paek, K.Y. Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Engg. Life Sci. 2005, 5, 333–342. [Google Scholar] [CrossRef]
- Han, J.; Zhong, J.J. Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme Microb. Technol. 2003, 32, 498–503. [Google Scholar] [CrossRef]
- Yu, K.W.; Hahn, E.J.; Paek, K.Y. Effects of NH4+: NO3- ratio and ionic strength on adventitious root growth and ginsenoside production in bioreactor culture of Panax ginseng CA Meyer. Acta Hortic. 2001, 259–262. [CrossRef]
- Thanh, N.T.; Murthy, H.N.; Yu, K.W.; Hahn, E.J.; Paek, K.Y. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl. Microbiol. Biotechnol. 2005, 67, 197–201. [Google Scholar] [CrossRef]
- Thanh, N.T.; Yoeup, P.K. Cultivation of ginseng (Panax ginseng CA Meyer) in bioreactor: Role of ethylene on cell growth and ginsenosides production. Tap Chi Sinh Hoc 2007, 29, 42–48. [Google Scholar]
- Ali, M.B.; Yu, K.W.; Hahn, E.J.; Paek, K.Y. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep. 2006, 25, 613–620. [Google Scholar] [CrossRef]
- Jeong, C.S.; Chakrabarty, D.; Hahn, E.J.; Lee, H.L.; Paek, K.Y. Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem. Eng. J. 2006, 27, 252–263. [Google Scholar] [CrossRef]
- Kochan, E.; Szymczyk, P.; Szymańska, G. Nitrogen and phosphorus as the factors affecting ginsenoside production in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol. Plant. 2016, 38, 149. [Google Scholar] [CrossRef]
- Kochan, E.; Balcerczak, E.; Lipert, A.; Szymańska, G.; Szymczyk, P. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor. Ind. Crop. Prod. 2018, 115, 182–193. [Google Scholar] [CrossRef]
- Yang, H.; Tabei, Y.; Kamada, H.; Kayano, T. Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep. 1999, 18, 520–526. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, S.Y.; Jeong, I.Y.; Kim, J.B.; Lee, G.J.; Kang, S.Y.; Kim, W. Improvement of ginsenoside production by Panax ginseng adventitious roots induced by γ-irradiation. Biol. Plant. 2009, 53, 408. [Google Scholar] [CrossRef]
- Le, K.C.; Jeong, C.S.; Lee, H.; Paek, K.Y.; Park, S.Y. Ginsenoside accumulation profiles in long-and short-term cell suspension and adventitious root cultures in Panax ginseng. Hort. Environ. Biotechnol. 2019, 60, 125–134. [Google Scholar] [CrossRef]
- Mitra, M.; Gantait, S.; Mandal, N. Coleus forskohlii: Advancements and prospects of in vitro biotechnology. Appl. Microbiol. Biotechnol. 2020, 104, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Hahn, E.J.; Murthy, H.N.; Paek, K.Y. Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol. Lett. 2004, 26, 1619–1622. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chandra, R. Engineering secondary metabolite production in hairy roots. Phytochem. Rev. 2011, 10, 371–395. [Google Scholar] [CrossRef]
- Shanks, J.V.; Morgan, J. Plant hairy root culture. Curr. Opin. Biotechnol. 1999, 10, 151–155. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, J.B.; Luo, D.; Jia, J.F. Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res. 2001, 11, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Bosela, M.J.; Michler, C.H. Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro: Evaluation of multiple nutrient formulations and cytokinin types. Vitr. Cell. Dev. Biol.—Plant 2008, 44, 316–329. [Google Scholar] [CrossRef]
- Carmine, A.A.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Cefotaxime. Drugs 1983, 25, 223–289. [Google Scholar] [CrossRef] [PubMed]
- Hahn, E.J.; Paek, K.Y.; Yu, K.W. Ginsenoside production by hairy root cultures of Panax ginseng CA Meyer in bioreactors. In International Conference on Medicinal and Aromatic Plants (Part II); ISHS: Budapest, Hungary, 2001; pp. 237–243. [Google Scholar]
- Yang, D.C.; Yang, K.J.; Choi, Y.E. Production of red ginseng specific ginsenosides (Rg2, Rg3, Rh1 and Rh2) from Agrobacterium—transformed hairy roots of Panax ginseng by heat treatment. J. Photosci. 2001, 8, 19–22. [Google Scholar]
- Palazón, J.; Cusidó, R.M.; Bonfill, M.; Mallol, A.; Moyano, E.; Morales, C.; Piñol, M.T. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol. Biochem. 2003, 41, 1019–1025. [Google Scholar] [CrossRef]
- Chung, H.J.; Cho, I.S.; Kim, J.H.; In, D.S.; Hur, C.G.; Song, J.S.; Woo, S.S.; Choi, D.W.; Liu, J.R. Changes in gene expression during hairy root formation by Agrobacterium rhizogenes infection in ginseng. J. Plant Biol. 2003, 346, 187. [Google Scholar] [CrossRef]
- Mallol, A.; Cusidó, R.M.; Palazón, J.; Bonfill, M.; Morales, C.; Piñol, M.T. Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 2001, 57, 365–371. [Google Scholar] [CrossRef]
- Woo, S.S.; Song, J.S.; Lee, J.Y.; In, D.S.; Chung, H.J.; Liu, J.R.; Choi, D.W. Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochemistry 2004, 65, 2751–2761. [Google Scholar] [CrossRef]
- Yu, K.W.; Gao, W.Y.; Son, S.H.; Paek, K.Y. Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng CA Meyer). Vitr. Cell. Dev. Biol.—Plant 2000, 36, 424–428. [Google Scholar] [CrossRef]
- Kim, O.T.; Bang, K.H.; Kim, Y.C.; Hyun, D.Y.; Kim, M.Y.; Cha, S.W. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult. 2009, 98, 25–33. [Google Scholar] [CrossRef]
- Kochan, E.; Szymańska, G.; Szymczyk, P. Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol. Plant. 2014, 36, 613–619. [Google Scholar] [CrossRef]
- Kochan, E.; Królicka, A.; Chmiel, A. Growth and ginsenoside production in Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiol. Plant. 2012, 34, 1513–1518. [Google Scholar] [CrossRef]
- Ha, L.T.; Pawlicki-Jullian, N.; Pillon-Lequart, M.; Boitel-Conti, M.; Duong, H.X.; Gontier, E. Hairy root cultures of Panax vietnamensis, a promising approach for the production of ocotillol-type ginsenosides. Plant Cell Tissue Organ Cult. 2016, 126, 93–103. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soyabean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
Panax sp. | Explant | Surface Sterilization | Basal Medium | Carbon Source | PGRs (mg/L or μM*) | Other Media Additives (mg/L or g/L*) | Culture Condition [Temp; PP; LI lux or PPFD#; RH] | Response | Acclimatization [Substrate Used (v/v); % Survival] | Ginsenoside Yield | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
P. ginseng | Leaf | 70% EtOH 30 sec → 0.625% NaOCl 1 min | MS | 3% sucrose | 10* NAA + 9* 2,4-D | NM | NM; 12 h; 24#; NM | Somatic embryo | NM | NM | [23] |
3* GA3 + 5* BAP | Shoot regeneration and rooting | ||||||||||
P. ginseng | Anther | 70% EtOH 30s → 2% NaOCl 1 min with drops of Tween 20 | MS | 9% sucrose | 4.53* 2,4-D | NM | 25 ± 1 °C; NM; NM; NM | Callus induction | NM | NM | [24] |
28.9* GA3 | Shoot regeneration | ||||||||||
P. pseudoginseng | Rhizome | 70% EtOH 30s → 2% NaOCl 1 min with drops of Tween 20 → 0.1% HgCl2 | MS | 3% sucrose | 2.5 2,4-D + 2.5 BAP | NM | NM | Somatic embryo | Black garden soil + compost+ leaf litter (1:1:1); 70% | NM | [26] |
1 GA3 | Somatic embryo generation | ||||||||||
P. ginseng | Cotyledon | 70% EtOH → 1% NaOCl | MS | 3% sucrose | NM | 40 mM NH4NO3 | 22 ± 2 °C; 16 h; 24#; NM | Callus induction | NM | 4.39 mg/g | [27] |
P. quinquefolium | Root | NM | MS | 3% sucrose | 2.5 2,4-D | NM | NM | Callus induction | NM | NM | [28] |
P. ginseng | Root | 70% EtOH 30s → 1% NaOCl 1 min | SH | 3% sucrose | 1 2,4-D + 0.1 KIN | NM | 25 ± 2 °C; NM; NM; NM | Callus induction | NM | 83.37 mg/L | [29] |
P. ginseng | Root | 70% EtOH 30 sec → 20% NaOCl 1 min with drops of Tween 20 | MS | 3% sucrose | 2 2,4-D | 0.1%(w/v) myo inositol | 25 °C; NM; NM; NM | Callus induction | NM | NM | [30] |
P. ginseng | Root | 75% EtOH | MS | 3% sucrose | 2 2,4-D + 0.5 KIN | NM | 23 ± 2 °C; NM; NM; NM | Callus induction | NM | 132.9 mg/L | [31] |
P. ginseng | Root | NM | MS | 5% sucrose | 25* IBA | NM | 22 ± 1 °C; NM; NM; NM | Callus induction | NM | 7.3 mg/L | [32] |
P. ginseng | Leaf | 70% EtOH 30 sec → 0.1% HgCl2 for 1 min | MS | 3% sucrose | 4 BAP | NM | 25 ± 2 °C; 16 h; 24#; 80 | Shoot induction | NM | NM | [33] |
P. quinquefolium | Root | 70% EtOH 30 sec | MS | 3% sucrose | 1 2,4-D + 0.25 KIN | NM | 23 ± 2 °C; NM; NM; NM | Callus induction | NM | NM | [34] |
Panax sp. | Basal Media | Carbon Source | PGR (mg/L or *μM) | Elicitor (μM/*mg/L) | Culture Conditions (Temp, PP, RH, LI, rpm) | Yield | References |
---|---|---|---|---|---|---|---|
P. ginseng | MS | 3% sucrose | 0.1 KIN + 1 2,4-D | NM | 25 °C, dark, NM, NA, NM | 54 mg/g | [30] |
P. ginseng | MS | 4% sucrose | 1 2,4-D | NM | 24 ± 1 °C, dark, NM, NA, NM | 3.08 mg/g | [38] |
P. ginseng | MS | 3% sucrose | 0.25 KIN | 6* Alternaria panax | 25 °C, dark, NM, NA, NM (30 days) | 276 mg/L | [40] |
P. ginseng | MS (no NH4NO3) | 5% sucrose | 2 NAA | 150 MJ | 22 °C, dark, NM, NA, 110 rpm (40 days) | 48 mg/g | [41] |
P. notoginseng | MS | NM | NM | 100 2-hydroxyethyl jasmonate | NM, NM, NM, NM, NM | 32.7 mg/L | [42] |
P. ginseng | MS | 3% sucrose | 2 IBA + 0.1 KIN | 2* JA | NM, dark, NM, NA, 100 rpm | 255 mg/L | [43] |
P. quinquefolium | MS | 3% sucrose | 0.25 KIN + 1 2,4-D | NM | 23 ± 2 °C, dark, NA, 120 rpm (90 days) | 3.36 mg/g | [44] |
P. vietnamensis | MS | 3% sucrose | 0.1 KIN + 3 2,4-D | NM | 25 °C, dark, NM, NA, 105 rpm | 5.7 mg/g | [45] |
P. ginseng | MS | 3% sucrose | 25* IBA | NM | 25 °C, dark, NM, NA, 100 rpm | 5.4 mg/g | [46] |
P. ginseng | MS | 3% sucrose | 0.5 BAP + 2 2,4-D | 500* CH | 25 °C, dark, NM, NA, 100 rpm | NM | [47] |
P. quinquefolium | MS | 3% sucrose | 0.002 TDZ + 0.2 2,4-D | NM | 26 ± 2 °C, 90%, NM, 40 μE/m2/s, 100 rpm (40 days) | 29.11 mg/g | [48] |
Species | Type of Bioreactor | Basal Media | PGR (mg/L) | Elicitor/Additives | Culture Condition (Temp, PP, Other) | Ginsenoside Yield | References |
---|---|---|---|---|---|---|---|
P.quinquefolius | Balloon type airlift | MS | 5 IBA | 4 mg/L Alternaria panax | 26 °C, dark, 100 vvm | 276 mg/L | [40] |
P.quinquefolium | Stirred tank | MS | 0.25 KIN + 1 2,4-D | 100 mg/L Lactoalbumin hydrolysate | 23 ± 2 °C, 1 vvm | 31.52 mg/L | [44] |
P.quinquefolium | Stirred tank | MS | 0.1 KIN + 1 2,4-D | NM | 26 °C, 100 vvm | 9 mg/g | [51] |
P.quinquefolium | Nutrient sprinkle | B5 | NM | NM | 26 ± 2 °C | 32.25 mg/g | [54] |
P. ginseng | Airlift | MS | NM | 10 mM Copper sulphate | 0.1 vvm, 23 ± 1 °C | 12.42 mg/g | [56] |
P. notoginseng | Airlift | MS | NM | 1 mM copper, 3.75 mM phosphate | Aeration rate: 0.8 vvm | 1.75 g/L | [57] |
P. ginseng | NM | MS | NM | 18.5 mH NO3- | NM | 9.9 mg/g | [58] |
P. ginseng | Balloon type bubble | MS | 7 IBA + 0.5 KIN | 200 μM MJ | 25 °C, dark | 8.82 mg/g | [59] |
P. ginseng | Balloon type airlift | MS | 7 IBA + 0.5 KIN | 20 ppm Ethylene | NM | NM | [60] |
P. ginseng | Balloon type airlift | MS | 5 IBA + 0.5 KIN | 200 μM MJ and salicylic acid | NM | NM | [61] |
P. ginseng | NM | MS | 24.6 μM IBA | NM | 0.1 vvm | 1.91 mg/g | [62] |
P.quinquefolium | Nutrient sprinkle | B5 | NM | NM | 26 °C, dark | 12.45 mg/g | [63] |
P.quinquefolium | Nutrient sprinkle | B5 | NM | 250 μM MJ | 26 °C | 24.77 mg/g | [64] |
Species | Explant | Strain | Basal Media (for induction) | Antibiotics (mg/L) | Elicitors (mg/L) | Basal Media (for maintenance) | Ginsenoside Yield | Reference |
---|---|---|---|---|---|---|---|---|
P. ginseng | Root | A4 | NM | NM | NM | MS + 3% sucrose | 3.62 mg/g | [76] |
P. ginseng | Root | A4 | NM | NM | MJ | SH | NM | [77] |
P. ginseng | Cotyledon | R1000 | NM | 800 cefotaxime | NM | ½ MS | NM | [78] |
P. ginseng | Rhizome | A4 | YEB | 500 cefotaxime | NM | SH | 72.9 mg/L | [79] |
P. ginseng | NM | A4 | NM | NM | NM | NM | 17.12 mg/g | [80] |
P. ginseng | Root | KCTC 2703 | Nutrient broth | 300 cefotaxime | 2 JA | ½ MS | 2 mg/L | [81] |
P. ginseng | Root | NM | NM | NM | 0.1 mM MJ | ½ MS | 6.83 mg/g | [82] |
P.quinquefolium | Leaf | ATCC 15834 | NM | NM | NM | B5 | 3 mg/g | [83] |
P.quinquefolium | Leaf | ATCC 15834 | NM | 500 ampicillin | NM | B5 | 9 mg/g | [84] |
P. vietnamensis | Shoot tip | ATCC 15834 | NM | 250 cefotaxime | NM | ½ SH | 10 g/L | [85] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gantait, S.; Mitra, M.; Chen, J.-T. Biotechnological Interventions for Ginsenosides Production. Biomolecules 2020, 10, 538. https://doi.org/10.3390/biom10040538
Gantait S, Mitra M, Chen J-T. Biotechnological Interventions for Ginsenosides Production. Biomolecules. 2020; 10(4):538. https://doi.org/10.3390/biom10040538
Chicago/Turabian StyleGantait, Saikat, Monisha Mitra, and Jen-Tsung Chen. 2020. "Biotechnological Interventions for Ginsenosides Production" Biomolecules 10, no. 4: 538. https://doi.org/10.3390/biom10040538
APA StyleGantait, S., Mitra, M., & Chen, J.-T. (2020). Biotechnological Interventions for Ginsenosides Production. Biomolecules, 10(4), 538. https://doi.org/10.3390/biom10040538