Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Cultivation of Organotypic Brain Slices
2.2. Preparation of Cultures of Cerebellar Granule Cells
2.3. Simulated Ischaemia Model
2.4. Determination of Lactate Dehydrogenase Activity in the Incubation Medium
2.5. Evaluation of Cell Viability by Fluorescence Microscopy
2.6. Isolation of Brain Mitochondria
2.7. Measurement of Mitochondrial Respiration
2.8. Measurement of Mitochondrial Calcium Retention Capacity
2.9. Assesment of MPTP Opening in Neuronal Cell Cultures.
2.10. Measurement of the Mitochondrial Electron Transfer System Complex I Activity
2.11. Statistical Analysis
3. Results
3.1. Effect of Phenformin and Metformin on Neuronal Viability in CGC Cultures
3.2. Effects of Phenformin and Metformin on Simulated Ischemia- and Hypoxia-Induced Necrosis in Brain Slice Cultures
3.3. Modulation of Simulated Ischaemia-Induced Necrosis by Inhibitors of Complex I and MPTP in Brain Slice Cultures
3.4. Acute Effects of Inhibitors of Complex I and MPTP on Ca2+ Retention Capacity of Brain Cortex Mitochondria
3.5. Effects of Metformin, Phenformin, and Inhibitors of Complex I on MPTP Opening in Intact Cultured CGC Neurons
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO EMRO. Stroke, Cerebrovascular Accident. Health Topics. Available online: http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 24 September 2020).
- Borutaite, V.; Toleikis, A.; Brown, G.C. In the Eye of the Storm: Mitochondrial Damage during Heart and Brain Ischaemia. FEBS J. 2013, 280, 4999–5014. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Luan, Q.; Dong, H.; Song, W.; Xie, K.; Hou, L.; Xiong, L. Inhibition of Mitochondrial Permeability Transition Pore Opening Contributes to the Neuroprotective Effects of Ischemic Postconditioning in Rats. Brain Res. 2012, 1436, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Baines, C.P. The Mitochondrial Permeability Transition Pore and Ischemia-Reperfusion Injury. Basic Res. Cardiol. 2009, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal Cell Death. Physiol. Rev. 2018, 813–880. [Google Scholar] [CrossRef]
- Griffiths, E.J.; Halestrap, A.P. Further Evidence That Cyclosporin A Protects Mitochondria from Calcium Overload by Inhibiting a Matrix Peptidyl-Prolyl Cis-Trans Isomerase. Implications for the Immunosuppressive and Toxic Effects of Cyclosporin. Biochem. J. 1991, 274 Pt 2, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Arandarcikaite, O.; Jokubka, R.; Borutaite, V. Neuroprotective Effects of Nitric Oxide Donor NOC-18 against Brain Ischemia-Induced Mitochondrial Damages: Role of PKG and PKC. Neurosci. Lett. 2015, 586, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lesnefsky, E.J.; Chen, Q.; Moghaddas, S.; Hassan, M.O.; Tandler, B.; Hoppel, C.L. Blockade of electron transport during ischemia protects cardiac mitochondria. J. Biol. Chem. 2004, 279, 47961–47967. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Hoppel, C.L.; Lesnefsky, E.J. Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J. Pharmacol. Exp. Ther. 2006, 316, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, A.A.; Chen, Q.; Quan, N.; Rousselle, T.; Maceyka, M.W.; Samidurai, A.; Thompson, J.; Hu, Y.; Li, J.; Lesnefsky, E.J. Mitochondrial complex I inhibition by metformin limits reperfusion injury. J. Pharmacol. Exp. Ther. 2019, 369, 282–290. [Google Scholar] [CrossRef]
- Mnatsakanyan, N.; Jonas, E.A. The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp. Neurol. 2020, 332, 113400. [Google Scholar] [CrossRef]
- Carraro, M.; Carrer, A.; Urbani, A.; Bernardi, P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J. Mol. Cell. Cardiol. 2020, 144, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Morciano, G.; Bonora, M.; Campo, G.; Aquila, G.; Rizzo, P.; Giorgi, C.; Wieckowski, M.R.; Pinton, P. Mechanistic Role of MPTP in Ischemia-Reperfusion Injury. In Advances in Experimental Medicine and Biology; Springer LLC: New York, NY, USA, 2017; Volume 982, pp. 169–189. [Google Scholar]
- Teixeira, G.; Abrial, M.; Portier, K.; Chiari, P.; Couture-Lepetit, E.; Tourneur, Y.; Ovize, M.; Gharib, A. Synergistic Protective Effect of Cyclosporin A and Rotenone against Hypoxia-Reoxygenation in Cardiomyocytes. J. Mol. Cell. Cardiol. 2013, 56, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, C.; De Oliveira, F.; Ronot, X.; Mousseau, M.; Leverve, X.; Fontaine, E. Rotenone Inhibits the Mitochondrial Permeability Transition-Induced Cell Death in U937 and KB Cells. J. Biol. Chem. 2001, 276, 41394–41398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Chauvin, C.; De Paulis, D.; De Oliveira, F.; Gharib, A.; Vial, G.; Lablanche, S.; Leverve, X.; Bernardi, P.; Ovize, M.; et al. Inhibition of Complex I Regulates the Mitochondrial Permeability Transition through a Phosphate-Sensitive Inhibitory Site Masked by Cyclophilin D. Biochim. Biophys. Acta 2012, 1817, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.A.; Hawa, M.I.; Jaspan, J.B.; Sim, B.M.; DiSilvio, L.; Featherbe, D.; Kurtz, A.B. Mechanism of Metformin Action in Non-Insulin-Dependent Diabetes. Diabetes 1987, 36, 632–640. [Google Scholar] [CrossRef]
- Shaw, R.J.; Lamia, K.A.; Vasquez, D.; Koo, S.H.; Bardeesy, N.; DePinho, R.A.; Montminy, M.; Cantley, L.C. Medicine: The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Science 2005, 310, 1642–1646. [Google Scholar] [CrossRef] [Green Version]
- Bridges, H.R.; Sirviö, V.A.; Agip, A.N.A.; Hirst, J. Molecular Features of Biguanides Required for Targeting of Mitochondrial Respiratory Complex I and Activation of AMP-Kinase. BMC Biol. 2016, 14, 65. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M.J. Biguanides Suppress Hepatic Glucagon Signalling by Decreasing Production of Cyclic AMP. Nature 2013, 494, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Soberanes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.; Scott Budigner, G.R.; et al. Metformin Inhibits Mitochondrial Complex I of Cancer Cells to Reduce Tumorigenesis. eLife 2014, 13, e02242. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Leu, H.B.; Chen, T.J.; Chen, C.L.; Kuo, C.H.; Da Lee, S.; Kao, C.L. Metformin-Inclusive Therapy Reduces the Risk of Stroke in Patients with Diabetes: A 4-Year Follow-up Study. J. Stroke Cerebrovasc. Dis. 2014, 23, 99–105. [Google Scholar] [CrossRef]
- Mima, Y.; Kuwashiro, T.; Yasaka, M.; Tsurusaki, Y.; Nakamura, A.; Wakugawa, Y.; Okada, Y. Impact of Metformin on the Severity and Outcomes of Acute Ischemic Stroke in Patients with Type 2 Diabetes Mellitus. J. Stroke Cerebrovasc. Dis. 2016, 25, 436–446. [Google Scholar] [CrossRef]
- Algire, C.; Moiseeva, O.; Deschênes-Simard, X.; Amrein, L.; Petruccelli, L.; Birman, E.; Viollet, B.; Ferbeyre, G.; Pollak, M.N. Metformin Reduces Endogenous Reactive Oxygen Species and Associated DNA Damage. Cancer Prev. Res. 2012, 5, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahova, M.; Palenickova, E.; Dankova, H.; Sticova, E.; Burian, M.; Drahota, Z.; Cervinkova, Z.; Kucera, O.; Gladkova, C.; Stopka, P.; et al. Metformin Prevents Ischemia Reperfusion-Induced Oxidative Stress in the Fatty Liver by Attenuation of Reactive Oxygen Species Formation. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G100–G111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Yang, L.; Kang, L.; Li, J.; Yang, L.; Zhang, J.; Liu, J.; Zhu, M.; Zhang, Q.; Shen, Y.; et al. Metformin Attenuates Myocardial Ischemia-Reperfusion Injury via up-Regulation of Antioxidant Enzymes. PLoS ONE 2017, 12, e0182777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drahota, Z.; Palenickova, E.; Endlicher, R.; Milerova, M.; Brejchova, J.; Vosahlikova, M.; Ssvoboda, P.; Kazdova, L.; Kalous, M.; Cervinkova, Z.; et al. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol. Res. 2014, 63, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, A.; Ozcan, C.; Holmuhamedov, E.L.; Terzic, A. Increased Calcium Vulnerability of Senescent Cardiac Mitochondria: Protective Role for a Mitochondrial Potassium Channel Opener. Mech. Ageing Dev. 2001, 122, 1073–1086. [Google Scholar] [CrossRef]
- Fernandez-Sanz, C.; Ruiz-Meana, M.; Castellano, J.; Miro-Casas, E.; Nuñez, E.; Inserte, J.; Vázquez, J.; Garcia-Dorado, D. Altered FoF1 ATP Synthase and Susceptibility to Mitochondrial Permeability Transition Pore during Ischaemia and Reperfusion in Aging Cardiomyocytes. Thromb. Haemost. 2015, 113, 441–451. [Google Scholar] [CrossRef]
- Petrosillo, G.; Moro, N.; Paradies, V.; Ruggiero, F.M.; Paradies, G. Increased Susceptibility to Ca2+-Induced Permeability Transition and to Cytochrome c Release in Rat Heart Mitochondria with Aging: Effect of Melatonin. J. Pineal Res. 2010, 48, 340–346. [Google Scholar] [CrossRef]
- Ljubicic, V.; Menzies, K.J.; Hood, D.A. Mitochondrial Dysfunction Is Associated with a Pro-Apoptotic Cellular Environment in Senescent Cardiac Muscle. Mech. Ageing Dev. 2010, 131, 79–88. [Google Scholar] [CrossRef]
- Krestinina, O.; Azarashvili, T.; Baburina, Y.; Galvita, A.; Grachev, D.; Stricker, R.; Reiser, G. In Aging, the Vulnerability of Rat Brain Mitochondria Is Enhanced Due to Reduced Level of 2′,3′-Cyclic Nucleotide-3′-Phosphodiesterase (CNP) and Subsequently Increased Permeability Transition in Brain Mitochondria in Old Animals. Neurochem. Int. 2015, 80, 41–50. [Google Scholar] [CrossRef]
- Mather, M.; Rottenberg, H. Aging Enhances the Activation of the Permeability Transition Pore in Mitochondria. Biochem. Biophys. Res. Commun. 2000, 273, 603–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandya, J.D.; Grondin, R.; Yonutas, H.M.; Haghnazar, H.; Gash, D.M.; Zhang, Z.; Sullivan, P.G. Decreased Mitochondrial Bioenergetics and Calcium Buffering Capacity in the Basal Ganglia Correlates with Motor Deficits in Anonhuman Primate Model of Aging. Neurobiol. Aging 2015, 36, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Bal-Price, A.; Brown, G.C. Inflammatory Neurodegeneration Mediated by Nitric Oxide from Activated Glia-Inhibiting Neuronal Respiration, Causing Glutamate Release and Excitotoxicity. J. Neurosci. 2001, 21, 6480–6491. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.U.E. Methoden der Enzymatischen Analyse, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1974; Volumes 1 and 2. [Google Scholar]
- Scholte, H.R. The Separation and Enzymatic Characterization of Inner and Outer Membranes of Rat-Heart Mitochondria. BBA Biomembr. 1973, 330, 283–293. [Google Scholar] [CrossRef]
- Chance, B.; Williams, G.R. The Respiratory Chain and Oxidative Phosphorylation. In Advances in Enzymology and Related Subjects of Biochemistry; Wiley: Hoboken, NY, USA, 2006; Volume 17, pp. 65–134. [Google Scholar]
- Rekuviene, E.; Ivanoviene, L.; Borutaite, V.; Morkuniene, R. Data on Effects of Rotenone on Calcium Retention Capacity, Respiration and Activities of Respiratory Chain Complexes I and II in Isolated Rat Brain Mitochondria. Data Brief 2017, 13, 707–712. [Google Scholar] [CrossRef]
- Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of Mitochondrial Respiratory Chain Enzymatic Activities on Tissues and Cultured Cells. Nat. Protoc. 2012, 7, 1235–1246. [Google Scholar] [CrossRef]
- Cho, S.; Wood, A.; Bowlby, M. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics. Curr. Neuropharmacol. 2007, 5, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Yendapally, R.; Sikazwe, D.; Kim, S.S.; Ramsinghani, S.; Fraser-Spears, R.; Witte, A.P.; La-Viola, B. A Review of Phenformin, Metformin, and Imeglimin. Drug Dev. Res. 2020, 81, 390–401. [Google Scholar] [CrossRef]
- Galeffi, F.; Shetty, P.K.; Sadgrove, M.P.; Turner, D.A. Age-Related Metabolic Fatigue during Low Glucose Conditions in Rat Hippocampus. Neurobiol. Aging 2015, 36, 982–992. [Google Scholar] [CrossRef] [Green Version]
- Fujino, K.; Ogura, Y.; Sato, K.; Nedachi, T. Potential Neuroprotective Effects of SIRT1 Induced by Glucose Deprivation in PC12 Cells. Neurosci. Lett. 2013, 557, 148–153. [Google Scholar] [CrossRef]
- Nishimoto, A.; Kugimiya, N.; Hosoyama, T.; Enoki, T.; Li, T.S.; Hamano, K. HIF-1α Activation under Glucose Deprivation Plays a Central Role in the Acquisition of Anti-Apoptosis in Human Colon Cancer Cells. Int. J. Oncol. 2014, 45, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhu, L.; Liu, J.; Zhu, T.; Xie, Z.; Sun, X.; Zhang, H. Metformin Protects against Oxidative Stress Injury Induced by Ischemia/Reperfusion via Regulation of the LncRNA-H19/MiR-148a-3p/Rock2 Axis. Oxid. Med. Cell. Longev. 2019, 8768327. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Zheng, Y.R.; Hou, W.W.; Yuan, Y.; Shen, Z.; Wu, X.L.; Chen, Y.; Zhang, L.S.; Hu, W.W.; Chen, Z.; et al. Pre-Stroke Metformin Treatment Is Neuroprotective Involving AMPK Reduction. Neurochem. Res. 2016, 41, 2719–2727. [Google Scholar] [CrossRef] [PubMed]
- Ravera, S.; Podestà, M.; Sabatini, F.; Dagnino, M.; Cilloni, D.; Fiorini, S.; Barla, A.; Frassoni, F. Discrete Changes in Glucose Metabolism Define Aging. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rekuviene, E.; Ivanoviene, L.; Borutaite, V.; Morkuniene, R. Rotenone Decreases Ischemia-Induced Injury by Inhibiting Mitochondrial Permeability Transition in Mature Brains. Neurosci. Lett. 2017, 653, 45–50. [Google Scholar] [CrossRef]
- Chen, Q.; Moghaddas, S.; Hoppel, C.L.; Lesnefsky, E.J. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J. Pharmcol. Exp. Ther. 2006, 319, 1405–1412. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Humphries, K.M. Selective Inhibition of Deactivated Mitochondrial Complex I by Biguanides. Biochemistry 2015, 54, 2011–2021. [Google Scholar] [CrossRef] [Green Version]
- Galkin, A.; Abramov, A.Y.; Frakich, N.; Duchen, M.R.; Moncada, S. Lack of Oxygen Deactivates Mitochondrial Complex I: Implications for Ischemic Injury? J. Biol. Chem. 2009, 284, 36055–36061. [Google Scholar] [CrossRef] [Green Version]
- Abdelsameea, A.A.; Moustaf, A.A.; Mohamed, A.M.H. Modulation of the Oxidative Stress by Metformin in the Cerebrum of Rats Exposed to Global Cerebral Ischemia and Ischemia/Reperfusion. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2387–2392. [Google Scholar]
- Ashabi, G.; Khodagholi, F.; Khalaj, L.; Goudarzvand, M.; Nasiri, M. Activation of AMP-Activated Protein Kinase by Metformin Protects against Global Cerebral Ischemia in Male Rats: Interference of AMPK/PGC-1α Pathway. Metab. Brain Dis. 2014, 29, 47–58. [Google Scholar] [CrossRef]
- Jiang, S.; Li, T.; Ji, T.; Yi, W.; Yang, Z.; Wang, S.; Yang, Y.; Gu, C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018, 4535–4551. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Benashski, S.E.; Venna, V.R.; McCullough, L.D. Effects of Metformin in Experimental Stroke. Stroke 2010, 41, 2645–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skemiene, K.; Rekuviene, E.; Jekabsone, A.; Cizas, P.; Morkuniene, R.; Borutaite, V. Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury. Biomolecules 2020, 10, 1400. https://doi.org/10.3390/biom10101400
Skemiene K, Rekuviene E, Jekabsone A, Cizas P, Morkuniene R, Borutaite V. Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury. Biomolecules. 2020; 10(10):1400. https://doi.org/10.3390/biom10101400
Chicago/Turabian StyleSkemiene, Kristina, Evelina Rekuviene, Aiste Jekabsone, Paulius Cizas, Ramune Morkuniene, and Vilmante Borutaite. 2020. "Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury" Biomolecules 10, no. 10: 1400. https://doi.org/10.3390/biom10101400
APA StyleSkemiene, K., Rekuviene, E., Jekabsone, A., Cizas, P., Morkuniene, R., & Borutaite, V. (2020). Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury. Biomolecules, 10(10), 1400. https://doi.org/10.3390/biom10101400