Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extracts
2.2. Wine Samples
2.3. Determination of Antioxidant Capacity of the Wines
2.4. Spectrophotometric Determination of Total Anthocyanins, Phenolic Content, and Flavonoids
2.5. Identification and Quantification of Phenolic Composition by HPLC-DAD
2.6. Oenological Parameters of Wines
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extracts
3.2. Antioxidant Capacity of Wine Samples
3.3. Phenolic Composition of Wine Samples
3.4. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karbowiak, T.; Gougeon, R.D.; Alin, J.B.; Brachais, L.; Debeaurofr, F.; Voilley, A.; Chassagne, D. Wine oxidation and the role of cork. Crit. Rev. Food Sci. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; de Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Tratado de Enología: Volumen 2. Química del Vino. Estabilización y Tratamientos; Editorial Hemisferio Sur: Buenos Aires, Argentina, 2002. [Google Scholar]
- Garde-Cerdán, T.; Marsellés-Fontanet, A.R.; Arias-Gil, M.; Ancín-Azpilicueta, C.; Martín-Belloso, O. Influence of SO2 on the evolution of volatile compounds through alcoholic fermentation of must stabilized by pulsed electric fields. Eur. Food Res. Technol. 2008, 227, 401–408. [Google Scholar] [CrossRef]
- Goode, J.; Harrop, S. Authentic Wine: Toward Natural and Sustainable Winemaking; The Regents of the University of California: Berkeley, CA, USA, 2011. [Google Scholar]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romano, P. Biotechnological approach based on selected Saccharomyces cerevisiae starters for reducing the use of sulfur dioxide in wine. Microorganisms 2020, 8, 738. [Google Scholar] [CrossRef]
- Yildirim, H.K.; Darici, B. Alternative methods of sulfur dioxide used in wine production. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 675–687. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Park, S.K. Development of a method to measure hydrogen sulfide in wine fermentation. J. Microbiol. Biotechn. 2008, 18, 1550–1554. [Google Scholar]
- Pripis-Nicolau, L.; de Revel, G.; Bertrand, A.; Lonvaud-Funel, A. Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J. Appl. Microbiol. 2004, 96, 1176–1184. [Google Scholar] [CrossRef]
- Siebert, T.E.; Solomon, M.R.; Pollnitz, A.P.; Jeffery, D.W. Selective determination of volatile sulfur compounds in wine by gas chromatography with sulphur chemiluminescence detection. J. Agric. Food Chem. 2010, 58, 9454–9462. [Google Scholar] [CrossRef]
- Vally, H.; Thompson, P.J. Role of sulfite additives in wine induced asthma: Single dose and cumulative dose studies. Thorax 2001, 56, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative methods to SO2 for microbiological stabilization of wine. Compr. Rev. Food Sci. F 2019, 18, 455–479. [Google Scholar] [CrossRef] [Green Version]
- Puértolas, E.; López, N.; Condon, S.; Raso, J.; Álvarez, I. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Nunes, C.; Cappelle, J.; Gonçalves, F.J.; Rodrigues, A.; Saraiva, J.A.; Coimbra, M.A. Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chem. 2013, 141, 2558–2566. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, I.N.; du Toit, M.; Krügel, M. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 2011, 28, 510–517. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, J.F.; Sun, D.W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends Food Sci. Tech. 2013, 33, 40–53. [Google Scholar] [CrossRef]
- Nieto-Rojo, R.; Luquin, A.; Ancín-Azpilicueta, C. Improvement of wine aromatic quality using mixtures of lysozyme and dimethyl dicarbonate, with low SO2 concentration. Food Adit. Contam. A 2015, 32, 1965–1975. [Google Scholar]
- Izquierdo-Cañas, P.M.; García-Romero, E.; Huertas-Nebreda, B.; Gómez-Alonso, S. Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 2012, 23, 73–81. [Google Scholar] [CrossRef]
- Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Moreno-Rojas, J.M.; Gonzalo-Diago, A.; Guerrero, R.F.; Ortiz, V.; Cantos-Villar, E. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine. Food Chem. 2016, 192, 25–33. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Moreno-Arribas, M.; Martín-Álvarez, P.; Bartolomé, B. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int. J. Food Microbiol. 2011, 145, 426–431. [Google Scholar] [CrossRef] [PubMed]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Marchante, L.; Loarce, L.; Izquierdo-Cañas, P.M.; Alañón, M.E.; García-Romero, E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Natural extracts from grape seed and stem by-products in combination with colloidal silver as alternative preservatives to SO2 for white wines: Effects on chemical composition and sensorial properties. Food Res. Int. 2019, 125, 108594. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.J.; Raposo, R.; Puertas, B.; Cuevas, F.J.; Chinnici, F.; Moreno-Rojas, J.M.; Cantos-Villar, E. Effect of a grapevine-shoot waste extract on red wine aromatic properties. J. Sci. Food Agric. 2018, 98, 5606–5615. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Queiroz, M.; Rodrigues, M.; Barros, A.I.R.N.A. Chapter 23—Evaluation of the phytochemistry and biological activity of grape (Vitis vinifera L.) stems: Toward a Sustainable Winery Industry. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: London, UK, 2019; pp. 381–394. [Google Scholar]
- Stagos, D. Antioxidant activity of polyphenolic plant extracts. Antioxidants 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crop. Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crop. Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [Green Version]
- Raposo, R.; Chinnici, F.; Ruiz-Moreno, M.J.; Puertas, B.; Cuevas, F.J.; Carbú, M.; Guerrero, R.F.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M.; Cantos-Villar, E. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality. Food Chem. 2018, 243, 453–460. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Piñeiro, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grape stems. Ind. Crop. Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid-Based Compl. Alt. 2014, 4, 253875. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- OIV (International Organisation of Vine and Wine). Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2020; Volume 1, ISBN 978-2-85038-017-4. [Google Scholar]
- OIV (International Organisation of Vine and Wine). Standard for International Wine Competitions and Spirituous Beverages of Vitivinicultural Origin; OIV-COCOURS 332-2009; OIV: Paris, France, 2009. [Google Scholar]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Food 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Xie, J.; Schaich, K.M. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Fermentation. In Wine Science Principles and Applications, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; pp. 332–417. [Google Scholar]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci. Tech. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Salaha, M.I.; Kallithraka, S.; Marmaras, I.; Koussissi, E.; Tzourou, I. A natural alternative to sulphur dioxide for red wine production: Influence on colour, antioxidant activity and anthocyanin content. J. Food Compos. Anal. 2008, 21, 660–666. [Google Scholar] [CrossRef]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J. Application of the differential colorimetry and polyphenolic profile to the evaluation of the chromatic quality of Tempranillo red wines elaborated in warm climate. Influence of the presence of oak wood chips during fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J. Food Sci. Technol. 2012, 49, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicón, R.S.; Sánchez-Palomo, E.; Cabezudo, M.D. The colour and polyphenol composition of red wine varieties in Castilla-La Mancha (Spain). Afinidad 2002, 59, 435–443. [Google Scholar]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evolution of the phenolic content of red wines from Vitis vinifera L. during ageing in bottle. Food Chem. 2006, 95, 405–412. [Google Scholar]
- Bakker, J.; Bridle, P.; Bellworthy, S.J.; Garcia-Viguera, C.; Reader, H.P.; Watkins, S.J. Effect of sulphur dioxide and must extraction on colour, phenolic composition and sensory quality of red table wine. J. Sci. Food Agric. 1998, 78, 297–307. [Google Scholar] [CrossRef]
- Picinelli, A.; Bakker, J.; Bridle, P. Model wine solutions: Effect of sulphur dioxide on colour and composition during ageing. Vitis 1994, 33, 31–35. [Google Scholar]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Ginjom, I.; D´Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Musingo, M.N.; Sims, C.A.; Bates, R.P.; O´Keefe, S.F.; Lamikanra, O. Changes in ellagic acid and other phenols in Muscadine grape (Vitis rotundifolia) juices and wines during storage. Am. J. Enol. Vitic. 2001, 52, 109–114. [Google Scholar]
- Marquez, A.; Serratosa, M.P.; Merida, J. Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines. Food Chem. 2014, 146, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Canals, R.; Llaudy, M.C.; Valls, J.; Canals, J.M.; Zamora, F. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of tempranillo grapes at different stages of ripening. J. Agric. Food Chem. 2005, 53, 4019–4025. [Google Scholar] [CrossRef] [PubMed]
- Río-Segade, S.; Pace, C.; Torchio, F.; Giacosa, S.; Gerbi, V.; Rolle, L. Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Food Res. Int. 2015, 71, 50–57. [Google Scholar] [CrossRef]
Composition and Antioxidant Capacity | Vinetan® | Grape Stem Extract |
---|---|---|
Resveratrol | 24.6 ± 2.9 | 0.27 ± 0.02 |
Viniferin | 61.0 ± 5.5 | 0.54 ± 0.03 |
Gallic acid | nd | 0.19 ± 0.03 |
(+)-Catechin | nd | 0.87 ± 0.09 |
Quercetin | nd | 0.07 ± 0.00 |
Quercetin-derivative 1 | nd | 0.87 ± 0.06 |
Malvidin-3-glucoside | nd | 0.13 ± 0.01 |
Unknown anthocyanin 2 | nd | 0.14 ± 0.01 |
Total phenolic content 3 | 275.6 ± 27.2 | 85.1 ± 1.7 |
Antioxidant activity 4 | ||
ABTS | 1.93 ± 0.31 | 0.71 ± 0.01 |
DPPH | 0.48 ± 0.07 | 0.45 ± 0.05 |
FRAP | 0.49 ± 0.05 | 0.40 ± 0.03 |
Oenological Parameters | Control | Vinetan® | Grape Stem Extract |
---|---|---|---|
pH | 4.07 ± 0.02 | 3.99 ± 0.02 | 4.01 ± 0.09 |
Total acidity (g/L) 1 | 3.3 ± 0.1 | 3.7 ± 0.0 | 3.5 ± 0.1 |
Volatile acidity (g/L) 2 | 0.5 ± 0.1 | 0.6 ± 0.0 | 0.6 ± 0.0 |
Alcohol content (%, v/v) | 15.4 ± 0.3 | 15.4 ± 0.2 | 15.4 ± 0.2 |
Sugar content (g/L) | <2.5 | <2.5 | <2.5 |
Free SO2 (mg/L) | 28 ± 8 | <7 | <7 |
Total SO2 (mg/L) | 56 ± 18 | <15 | <15 |
Calcium (mg/L) | 37 ± 0 | 34 ± 1 | 35 ± 2 |
Magnesium (mg/L) | 86 ± 4 | 86 ± 4 | 84 ± 4 |
Potassium (mg/L) | 1211 ± 42 | 1073 ± 28 | 980 ± 104 |
Assay | Sample | Control | Vinetan® | Grape Stem Extract |
---|---|---|---|---|
ABTS (mM Trolox) | M | 7.1 ± 0.8 a | 5.2 ± 0.4 b | 4.8 ± 0.7 c |
50% AF | 21.0 ± 1.7 a | 23.1 ± 1.4 b | 19.5 ± 0.9 a | |
AF | 22.9 ± 2.4 a | 22.5 ± 2.0 a | 20.3 ± 2.2 a | |
MLF | 19.8 ± 2.7 a | 21.2 ± 2.0 a | 18.8 ± 3.4 a | |
B | 13.9 ± 0.9 a | 12.3 ± 0.5 b | 12.3 ± 0.5 b | |
YB | 13.6 ± 1.0 a | 13.1 ± 0.3 a | 12.1 ± 1.5 a | |
DPPH (mM Trolox) | M | 2.8 ± 0.2 a | 2.3 ± 0.2 b | 2.0 ± 0.2 c |
50% AF | 6.9 ± 0.4 a | 6.3 ± 0.6 b | 7.3 ± 0.4 a | |
AF | 6.5 ± 0.2 a | 6.3 ± 0.1 a | 6.1 ± 0.5 b | |
MLF | 6.8 ± 0.6 a | 6.5 ± 0.2 a | 6.6 ± 0.2 a | |
B | 6.5 ± 0.3 a | 5.9 ± 0.3 b | 6.1 ± 0.2 b | |
YB | 6.6 ± 0.5 a | 6.5 ± 0.2 a | 6.3 ± 0.4 a | |
FRAP (mM Trolox) | M | 4.7 ± 0.4 a | 3.0 ± 0.3 b | 2.8 ± 0.6 c |
50% AF | 13.1 ± 0.6 a | 14.1 ± 1.0 b | 12.0 ± 0.8 c | |
AF | 13.1 ± 0.7 a | 11.5 ± 0.6 b | 11.5 ± 1.0 b | |
MLF | 11.0 ± 1.9 a | 12.3 ± 2.0 a | 12.0 ± 0.8 a | |
B | 8.9 ± 0.7 a | 6.7 ± 1.0 b | 7.8 ± 0.5 c | |
YB | 7.7 ± 1.0 a | 8.7 ± 0.3 a | 7.3 ± 1.1 a |
Treatment | Malvidin-3-Glucoside | A | B | C | D | E | |
---|---|---|---|---|---|---|---|
Control | M | 20.1 ± 1.2 | 9.3 ± 1.3 | 7.0 ± 0.6 | 0.2 ± 0.0 | 0.6 ± 0.0 | 2.0 ± 0.1 |
50%AF | 101.9 ± 7.9 | 19.3 ± 3.2 | 20.6 ± 3.3 | 1.5 ± 0.2 | 3.6 ± 0.6 | 14.3 ± 1.9 | |
AF | 111.4 ± 4.8 | 13.0 ± 0.6 | 17.9 ± 0.8 | 1.3 ± 0.1 | 1.7 ± 0.2 | 11.7 ± 0.8 | |
MLF | 60.6 ± 34.4 | 6.3 ± 3.8 | 9.6 ± 5.8 | 0.8 ± 0.4 | 0.9 ± 0.4 | 5.9 ± 2.9 | |
B | 64.5 ± 9.7 | 6.4 ± 0.6 | 10.9 ± 1.6 | 1.0 ± 0.4 | 0.5 ± 0.3 | 5.2 ± 0.9 | |
YB | 44.6 ± 6.0 | 4.8 ± 0.5 | 7.4 ± 0.9 | 0.9 ± 0.3 | 0.4 ± 0.1 | 3.4 ± 0.5 | |
Grape Stem Extract | M | 11.2 ± 0.9 | 1.5 ± 0.2 | 1.7 ± 0.1 | <0.1 | 0.2 ± 0.0 | 1.0 ± 0.2 |
50%AF | 91.7 ± 12.6 | 14.7 ± 2.0 | 16.1 ± 2.2 | 1.4 ± 0.2 | 3.2 ± 0.4 | 12.1 ± 2.0 | |
AF | 113.2 ± 16.0 | 10.8 ± 0.7 | 15.7 ± 1.2 | 1.2 ± 0.3 | 2.1 ± 0.2 | 10.1 ± 0.9 | |
MLF | 78.3 ± 19.7 | 7.1 ± 1.4 | 11.2 ± 1.8 | 1.0 ± 0.1 | 1.2 ± 0.1 | 7.6 ± 1.8 | |
B | 57.6 ± 2.9 | 5.2 ± 0.6 | 8.7 ± 0.6 | 0.9 ± 0.1 | 0.4 ± 0.1 | 4.8 ± 0.4 | |
YB | 34.8 ± 2.3 | 3.6 ± 0.4 | 5.4 ± 0.5 | 0.8 ± 0.1 | 0.2 ± 0.1 | 2.9 ± 0.3 | |
Vinetan® | M | 12.1 ± 1.3 | 1.9 ± 0.7 | 2.1 ± 0.6 | <0.1 | 0.2 ± 0.0 | 1.1 ± 0.2 |
50%AF | 88.7 ± 9.8 | 15.3 ± 1.7 | 16.4 ± 1.7 | 1.6 ± 0.2 | 2.3 ± 0.3 | 12.5 ± 1.9 | |
AF | 102.0 ± 10.5 | 11.6 ± 1.3 | 16.5 ± 1.8 | 1.2 ± 0.1 | 2.2 ± 0.3 | 9.9 ± 1.3 | |
MLF | 63.6 ± 18.8 | 6.3 ± 2.4 | 9.7 ± 3.4 | 0.8 ± 0.2 | 1.3 ± 0.3 | 5.8 ± 2.0 | |
B | 53.9 ± 8.1 | 5.2 ± 1.4 | 8.5 ± 1.9 | 0.9 ± 0.2 | 0.4 ± 0.2 | 4.1 ± 0.9 | |
YB | 31.2 ± 3.6 | 3.5 ± 0.7 | 5.2 ± 0.9 | 0.7 ± 0.1 | 0.2 ± 0.1 | 2.4 ± 0.3 |
Sensory Tests | Control | Vinetan® | Grape Stem Extract |
---|---|---|---|
Visual | 10.7 ± 1.3 a | 12.1 ± 0.2 b | 11.7 ± 0.9 b |
Nose | 24.4 ± 2.4 a | 24.6 ± 1.6 a | 24.1 ± 1.5 a |
Taste | 34.6 ± 4.0 a | 35.5 ± 2.5 a | 34.9 ± 2.6 a |
Harmony (Overall Judgement) | 9.3 ± 0.7 a | 9.4 ± 0.5 a | 9.4 ± 0.5 a |
Total Score | 79.0 ± 7.2 a | 81.6 ± 3.7 a | 80.1 ± 4.1 a |
Sensory Tests | Control | Vinetan ® | Grape Stem Extract |
---|---|---|---|
Visual | 10.9 ± 2.2 a | 11.9 ± 1.5 a | 11.4 ± 1.2 a |
Nose | 22.6 ± 2.8 a | 25.4 ± 2.1b | 24.1 ± 2.3 ab |
Taste | 34.4 ± 3.9 a | 34.9 ± 3.4 a | 34.9 ± 3.1 a |
Harmony (Overall Judgement) | 9.3 ± 0.6 a | 9.4 ± 0.5 a | 9.4 ± 0.6 a |
Total Score | 77.1 ± 8.3 a | 81.6 ± 5.5 a | 79.9 ± 5.8 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esparza, I.; Martínez-Inda, B.; Cimminelli, M.J.; Jimeno-Mendoza, M.C.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants. Biomolecules 2020, 10, 1369. https://doi.org/10.3390/biom10101369
Esparza I, Martínez-Inda B, Cimminelli MJ, Jimeno-Mendoza MC, Moler JA, Jiménez-Moreno N, Ancín-Azpilicueta C. Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants. Biomolecules. 2020; 10(10):1369. https://doi.org/10.3390/biom10101369
Chicago/Turabian StyleEsparza, Irene, Blanca Martínez-Inda, María José Cimminelli, Maria Carmen Jimeno-Mendoza, José Antonio Moler, Nerea Jiménez-Moreno, and Carmen Ancín-Azpilicueta. 2020. "Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants" Biomolecules 10, no. 10: 1369. https://doi.org/10.3390/biom10101369
APA StyleEsparza, I., Martínez-Inda, B., Cimminelli, M. J., Jimeno-Mendoza, M. C., Moler, J. A., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2020). Reducing SO2 Doses in Red Wines by Using Grape Stem Extracts as Antioxidants. Biomolecules, 10(10), 1369. https://doi.org/10.3390/biom10101369