Common Variants in IL-20 Gene are Associated with Subclinical Atherosclerosis, Cardiovascular Risk Factors and IL-20 Levels in the Cohort of the Genetics of Atherosclerotic Disease (GEA) Mexican Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Subclinical Atherosclerosis
2.3. Quantification of IL-20 Concentration
2.4. Genetic Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Samples Characteristics
3.2. Association of Polymorphisms with SA
3.3. Association of the IL-20 Polymorphisms with Cardiovascular Risk Factors
3.4. Association of the rs1400986 Genotypes with IL-20 Levels
3.5. Correlation of rs1400986 Genotypes with IL-20 Levels and Adipose Tissue
3.6. Haplotypes Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nowbar, A.N.; Gitto, M.; Howard, J.P.; Francis, D.P.; Al-Lamee, R. Mortality From Ischemic Heart Disease: Analysis of Data From the World Health Organization and Coronary Artery Disease Risk Factors From NCD Risk Factor Collaboration. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005375. [Google Scholar] [CrossRef] [PubMed]
- Chobot, A.; Górowska-Kowolik, K.; Sokołowska, M.; Jarosz-Chobot, P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab. Res. Rev. 2018, 34, 3042. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-R.; Ann, S.H.; Won, K.-B.; Park, G.-M.; Kim, Y.-G.; Yang, D.H.; Kang, J.-W.; Lim, T.-H.; Kim, H.-K.; Choe, J.; et al. Association between insulin resistance, hyperglycemia and coronary artery disease according to the presence of diabetes. Sci. Rep. 2019, 9, 6129. [Google Scholar] [CrossRef] [PubMed]
- Fakhrzadeh, H.; Sharifi, F.; Alizadeh, M.; Arzaghi, S.M.; Tajallizade-Khoob, Y.; Tootee, A.; Alatab, S.; Mirarefin, M.; Badamchizade, Z.; Kazemi, H. Relationship between insulin resistance and subclinical atherosclerosis in individuals with and without type 2 diabetes mellitus. J. Diabetes Metab. Disord. 2015, 15, 41. [Google Scholar] [CrossRef]
- Newman, A.B.; Naydeck, B.L.; Sutton-Tyrrell, K.; Edmundowicz, D.; O’Leary, D.; Kronmal, R.; Burke, G.L.; Kuller, L.H. Relationship between coronary artery calcification and other measures of subclinical cardiovascular disease in older adults. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1674–1679. [Google Scholar] [CrossRef][Green Version]
- Wagenknecht, L.E.; Langefeld, C.D.; Carr, J.J.; Riley, W.; Freedman, B.I.; Moossavi, S.; Bowden, D.W. Race-specific relationships between coronary and carotid artery calcification and carotid intimal medial thickness. Stroke 2004, 35, 97–99. [Google Scholar] [CrossRef]
- Haberka, M.; Skilton, M.; Biedroń, M.; Szóstak-Janiak, K.; Partyka, M.; Matla, M.; Gąsior, Z. Obesity, visceral adiposity and carotid atherosclerosis. J. Diabetes Complicat. 2019, 33, 302–306. [Google Scholar] [CrossRef]
- Baloglu, I.; Turkmen, K.; Selcuk, N.; Tonbul, H.; Ozcicek, A.; Hamur, H.; Iyısoy, S.; Akbas, E. The Relationship between Visceral Adiposity Index and Epicardial Adipose Tissue in Patients with Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2019. [Google Scholar] [CrossRef]
- Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash, O. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018, 17, 218. [Google Scholar] [CrossRef]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes Mellitus and Inflammation. Curr. Diab. Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Poston, R.N. Atherosclerosis: Integration of its pathogenesis as a self-perpetuating propagating inflammation: A review. Cardiovasc. Endocrinol. Metab. 2019, 8, 51–61. [Google Scholar] [PubMed]
- Wolk, K.; Kunz, S.; Asadullah, K.; Sabat, R. Cutting edge: Immune cells as sources and targets of the IL-10 family members? J. Immunol. 2002, 168, 5397–5402. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Sarkar, D.; Walter, M.R.; Shi, Y.; Fisher, P.B. Interleukin -10 and R elated C ytokines and R eceptors. Annu. Rev. Immunol. 2004, 22, 929–979. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-Y.; Cheng, B.-C.; Jiang, M.-J.; Hsieh, M.-Y.; Chang, M.-S. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2090–2095. [Google Scholar] [CrossRef]
- Truelove, A.L.; Oleksyk, T.K.; Shrestha, S.; Thio, C.L.; Goedert, J.J.; Donfield, S.M.; Kirk, G.D.; Thomas, D.L.; O’Brien, S.J.; Smith, M.W. Evaluation of IL10, IL19 and IL20 gene polymorphisms and chronic hepatitis B infection outcome. Int. J. Immunogenet. 2008, 35, 255–264. [Google Scholar] [CrossRef]
- Caligiuri, G.; Kaveri, S.V.; Nicoletti, A. IL-20 and atherosclerosis: Another brick in the wall. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1929–1930. [Google Scholar] [CrossRef]
- Kvist, H.; Chowdhury, B.; Grangård, U.; Tylén, U.; Sjöström, L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. Am. J. Clin. Nutr. 1988, 48, 1351–1361. [Google Scholar] [CrossRef]
- Longo, R.; Ricci, C.; Masutti, F.; Vidimari, R.; Crocé, L.S.; Bercich, L.; Tiribelli, C.; Dalla Palma, L. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Investig. Radiol. 1993, 28, 297–302. [Google Scholar] [CrossRef]
- Mautner, G.C.; Mautner, S.L.; Froehlich, J.; Feuerstein, I.M.; Proschan, M.A.; Roberts, W.C.; Doppman, J.L. Coronary artery calcification: Assessment with electron beam CT and histomorphometric correlation. Radiology 1994, 192, 619–623. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Ocampo-Arcos, W.A.; López-Uribe, A.R.; González-Salazar, M.C.; Cardoso-Saldaña, G.; Mendoza-Pérez, E.; Medina-Urrutia, A.; Jorge-Galarza, E.; Posadas-Romero, C. Asociación del ácido úrico con factores de riesgo cardiovascular y aterosclerosis subclínica en adultos mexicanos. Rev. Mex. Endocrinol. Metab. Nutr. 2014, 1, 14–21. [Google Scholar]
- Medina-Urrutia, A.; Posadas-Romero, C.; Posadas-Sánchez, R.; Jorge-Galarza, E.; Villarreal-Molina, T.; González-Salazar, M.D.C.; Cardoso-Saldaña, G.; Vargas-Alarcón, G.; Torres-Tamayo, M.; Juárez-Rojas, J.G. Role of adiponectin and free fatty acids on the association between abdominal visceral fat and insulin resistance. Cardiovasc. Diabetol. 2015, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Coral-Vázquez, R.M.; Roque-Ramírez, B.; Llorente, L.; Lima, G.; Flores-Dominguez, C.; Villarreal-Molina, T.; Posadas-Romero, C.; et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: The genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget 2017, 8, 64459–64470. [Google Scholar] [CrossRef] [PubMed]
- Faggiano, P.; Dasseni, N.; Gaibazzi, N.; Rossi, A.; Henein, M.; Pressman, G. Cardiac calcification as a marker of subclinical atherosclerosis and predictor of cardiovascular events: A review of the evidence. Eur. J. Prev. Cardiol. 2019, 26, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Detrano, R.; Guerci, A.D.; Carr, J.J.; Bild, D.E.; Burke, G.; Folsom, A.R.; Liu, K.; Shea, S.; Szklo, M.; Bluemke, D.A.; et al. Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups. N. Engl. J. Med. 2008, 358, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.K.; Nurnberger, J.I. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
- Kingo, K.; Kõks, S.; Nikopensius, T.; Silm, H.; Vasar, E. Polymorphisms in the interleukin-20 gene: Relationships to plaque-type psoriasis. Genes Immun. 2004, 5, 117–121. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.K.; De-León-Rendón, J.L.; de la Torre, M.G.; Alvarez-León, E.; Vargas-Alarcón, G. Genetic polymorphisms of interleukin 20 (IL-20) in patients with ulcerative colitis. Immunol. Lett. 2013, 149, 50–53. [Google Scholar] [CrossRef]
- Galimova, E.; Rätsep, R.; Traks, T.; Kingo, K.; Escott-Price, V.; Kõks, S. Interleukin-10 family cytokines pathway: Genetic variants and psoriasis. Br. J. Dermatol. 2017, 176, 1577–1587. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, M.; Guo, Z.; Li, K.; Liu, Y.; Chen, M.; Yang, X. Circulating Serpina3 levels predict the major adverse cardiac events in patients with myocardial infarction. Int. J. Cardiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Lee, J.S.; Kim, J.A.; Roh, E.; Lee, Y.B.; Hong, S.H.; Yoo, H.J.; Baik, S.H.; Kim, N.H.; Seo, J.A.; et al. γ-Glutamyltransferase Variability and the Risk of Mortality, Myocardial Infarction and Stroke: A Nationwide Population-Based Cohort Study. J. Clin. Med. 2019, 8, 832. [Google Scholar] [CrossRef] [PubMed]
- Bobrus-Chociej, A.; Flisiak-Jackiewicz, M.; Daniluk, U.; Wojtkowska, M.; Kłusek-Oksiuta, M.; Tarasów, E.; Lebensztejn, D. Estimation of gamma-glutamyl transferase as a suitable simple biomarker of the cardiovascular risk in children with non-alcoholic fatty liver disease. Acta Biochim. Pol. 2018, 65, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Gaggini, M.; Morelli, M.; Buzzigoli, E.; DeFronzo, R.A.; Bugianesi, E.; Gastaldelli, A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013, 5, 1544–1560. [Google Scholar] [CrossRef] [PubMed]
- Estep, J.M.; Goodman, Z.; Sharma, H.; Younossi, E.; Elarainy, H.; Baranova, A.; Younossi, Z. Adipocytokine expression associated with miRNA regulation and diagnosis of NASH in obese patients with NAFLD. Liver Int. 2015, 35, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kishi, S.; Ninomiya, K.; Tomii, D.; Koseki, K.; Sato, Y.; Okuno, T.; Sato, K.; Koike, H.; Yahagi, K.; et al. Impact of abdominal fat distribution, visceral fat and subcutaneous fat on coronary plaque scores assessed by 320-row computed tomography coronary angiography. Atherosclerosis 2019, 287, 155–161. [Google Scholar] [CrossRef]
Control (n = 672) | SA (n = 274) | p | |
---|---|---|---|
Age (years) | 52 ± 9 | 59 ± 8 | <0.0001 |
Gender (% male) | 38.2 | 72.6 | <0.0001 |
Body Mass Index (kg/m2) | 27.9 (25.4–30.9) | 28.1 (25.6–31.3) | 0.219 |
Waist Circumferences (cm) | 93.4 ± 11.7 | 97.4 ± 11.1 | <0.0001 |
Systolic Blood Pressure (mmHg) | 115 (106–126) | 124 (113–137) | <0.0001 |
Diastolic Blood Pressure (mmHg) | 72 (66–78) | 77 (70–83) | <0.0001 |
Total Adipose Fat (cm3) | 443 (350–542) | 442 (353–569) | 0.391 |
Visceral Adipose fat (cm3) | 146 (105–188) | 180 (141–230) | <0.0001 |
Subcutaneous Adipose fat (cm3) | 286 (218–371) | 260 (193–340) | 0.002 |
Total Cholesterol (mg/dL) | 190 (168–209) | 198 (171–221) | 0.002 |
HDL-C (mg/dL) | 47 (37–57) | 43 (36–50) | <0.0001 |
LDL-C (mg/dL) | 115.6 (96.2–133.2) | 124.4 (102.3–145.2) | <0.0001 |
Triglycerides (mg/dL) | 141 (107–194) | 158 (118–206) | 0.007 |
Non-HDL-Cholesterol (mg/dL) | 140 (120–162) | 153 (129–175) | <0.0001 |
ALT (IU/L) | 23 (17–32) | 22 (17–32) | 0.819 |
AST (IU/L) | 25 (21–30) | 25 (21–31) | 0.542 |
GGT (IU/L) | 24 (17–41) | 29 (21–41) | 0.001 |
Alkaline Phosphatase (IU/L) | 81 (68–98) | 77 (65–93) | 0.013 |
Apo B (mg/dL) | 86 (72–106) | 96 (79–119) | <0.0001 |
Apo A1 (mg/dL) | 132 (113–157) | 133 (113–157) | 0.81 |
Apo-B/Apo-A | 0.65 (0.51–0.84) | 0.7 (0.6–0.9) | 0.001 |
Glucose (mg/dL) | 90 (84–97) | 95 (87–107) | <0.0001 |
Insulin (µIU/mL) | 18 (13–24) | 19 (13–25) | 0.212 |
HOMA-IR | 3.9 (2.7–5.8) | 4.7 (3.1–6.8) | <0.0001 |
hsCRP (mg/dL) | 1.69 (0.87–3.46) | 1.71 (0.89–3.45) | 0.76 |
Creatinine (mg/dL) | 0.8 (0.7–0.9) | 0.9 (0.7–1.1) | <0.0001 |
Adiponectin (µg/mL) | 8.4 (5–12.9) | 6.4 (4.2–10.2) | <0.0001 |
Uric Acid (mg/dL) | 5.4 (4.4–6.4) | 5.9 (4.9–6.9) | <0.0001 |
Albumin (µg/mL) | 6.3 (2.9–12) | 7.2 (2.9–19) | 0.026 |
Free Fatty Acid (mEq/L) | 0.5 (0.4–0.7) | 0.6 (0.4–0.7) | 0.631 |
IR of the Adipose Tissue | 9.7 (6.2–14.5) | 10.2 (6.6–13.9) | 0.629 |
Control (n = 672) | SA (n = 274) | * P | |
---|---|---|---|
Total Cholesterol >200 mg/dL (%) | 35.4 | 47.1 | 0.001 |
LDL-Cholesterol > 130 mg/dL (%) | 29.3 | 42.9 | <0.0001 |
Hypoalphalipoproteinemia (%) | 47.7 | 45.3 | 0.518 |
Hypertriglyceridemia (%) | 45.2 | 53.5 | 0.022 |
Non-HDL-Cholesterol > 160 mg/dL (%) | 25.9 | 42 | <0.0001 |
Overweight (%) | 45.8 | 47.4 | 0.114 |
Obesity (%) | 31.1 | 33.9 | 0.083 |
Abdominal Obesity (%) | 79.6 | 82.1 | 0.417 |
Type 2 Diabetes Mellitus (%) | 10.6 | 23 | <0.0001 |
Hyperinsulinemia (%) | 55.4 | 62.8 | 0.023 |
Insulin resistance (%) | 57.5 | 67.9 | 0.002 |
Metabolic Syndrome (%) | 40.6 | 54 | <0.0001 |
Hypertension (%) | 29.2 | 49.6 | <0.0001 |
High Total Abdominal Tissue (%) | 55.4 | 61.7 | 0.045 |
High Subcutaneous Abdominal Tissue (%) | 50 | 54.7 | 0.106 |
High Visceral Abdominal Tissue (%) | 58.8 | 73.7 | <0.0001 |
Fatty Liver (%) | 32.1 | 39.3 | 0.024 |
SNP | Model | Genotypes and Alleles | SA | Control | p | OR | 95% CI |
---|---|---|---|---|---|---|---|
n | n | ||||||
rs1400986 | CC | 177 | 336 | ||||
CT | 87 | 293 | |||||
TT | 10 | 43 | |||||
C | 441 | 965 | 0.0001 | 0.61 | 0.48–0.78 | ||
T | 107 | 379 | |||||
codominant1 | CC | 177 | 336 | 0.0001 | 0.51 | 0.36–0.73 | |
CT | 87 | 293 | |||||
codominant2 | CC | 177 | 336 | 0.014 | 0.36 | 0.16–0.81 | |
TT | 10 | 43 | |||||
dominant | CC | 177 | 336 | 0.0001 | 0.49 | 0.35–0.69 | |
CT + TT | 97 | 336 | |||||
recessive | CC + CT | 264 | 629 | 0.063 | 0.47 | 0.21–1.04 | |
TT | 10 | 43 | |||||
additive | – | – | – | 0.0001 | 0.55 | 0.41–0.73 | |
rs1518108 | CC | 79 | 181 | ||||
CT | 140 | 336 | |||||
TT | 55 | 155 | |||||
C | 298 | 698 | 0.229 | 0.89 | 0.75–1.06 | ||
T | 250 | 646 | |||||
codominant1 | CC | 79 | 181 | 0.246 | 0.79 | 0.54–1.16 | |
CT | 140 | 336 | |||||
codominant2 | CC | 79 | 181 | 0.048 | 0.62 | 0.39–0.99 | |
TT | 55 | 155 | |||||
dominant | CC | 79 | 181 | 0.102 | 0.74 | 0.51–1.06 | |
CT + TT | 195 | 491 | |||||
recessive | CC + CT | 219 | 517 | 0.110 | 0.72 | 0.49–1.07 | |
TT | 55 | 155 | |||||
additive | – | – | – | 0.0480 | 0.79 | 0.63–0.99 |
SNP | Model | Genotypes | Variable | p | OR | 95% CI | |
---|---|---|---|---|---|---|---|
(i) Controls | |||||||
rs1400986 | Inflammation | ||||||
Yes n = 203 | No n = 469 | ||||||
codominant1 | CC | 91 | 245 | 0.047 | 1.45 | 1.01–2.10 | |
CT | 101 | 192 | |||||
GGT > 75 | |||||||
Yes n = 267 | No n = 400 | ||||||
codominant2 | CC | 140 | 196 | 0.023 | 0.41 | 0.19–0.88 | |
TT | 10 | 32 | |||||
recessive | CC + CT | 257 | 368 | 0.024 | 0.42 | 0.19–0.89 | |
TT | 10 | 32 | |||||
rs1518108 | Hypertension | ||||||
Yes n = 196 | No n = 476 | ||||||
codominant1 | CC | 38 | 143 | 0.008 | 1.83 | 1.16–2.86 | |
CT | 113 | 223 | |||||
dominant | CC | 38 | 143 | 0.016 | 1.68 | 1.10–2.59 | |
CT + TT | 158 | 333 | |||||
Inflammation | |||||||
Yes n = 203 | No n = 469 | ||||||
codominant2 | CC | 43 | 138 | 0.037 | 1.73 | 1.03–2.89 | |
TT | 51 | 104 | |||||
recessive | CC + CT | 152 | 365 | 0.036 | 1.31 | 1.01–1.70 | |
TT | 51 | 104 | |||||
Total abdominal tissue >75 | |||||||
Yes n = 360 | No n = 290 | ||||||
codominant1 | CC | 96 | 79 | 0.025 | 1.69 | 1.07–2.69 | |
CT | 179 | 146 | |||||
dominant | CC | 96 | 79 | 0.048 | 1.54 | 1.004–2.37 | |
CT + TT | 264 | 211 | |||||
(ii) SA | |||||||
rs1518108 | GGT > 75 | ||||||
Yes n = 111 | No n = 163 | ||||||
codominant1 | CC | 43 | 36 | 0.023 | 0.51 | 0.28–0.91 | |
CT | 51 | 88 | |||||
codominant2 | CC | 43 | 36 | 0.006 | 0.35 | 0.16–0.74 | |
TT | 17 | 39 | |||||
dominant | CC | 43 | 36 | 0.006 | 0.46 | 0.26–0.79 | |
CT + TT | 68 | 127 | |||||
additive | - | - | - | 0.004 | 0.58 | 0.40–0.99 | |
ALP > 75 | |||||||
Yes n = 91 | No n = 183 | ||||||
codominant1 | CC | 36 | 43 | 0.011 | 0.46 | 0.26–0.84 | |
CT | 38 | 101 | |||||
dominant | CC | 36 | 43 | 0.01 | 0.48 | 0.28–0.83 | |
CT + TT | 55 | 140 | |||||
additive | - | - | - | 0.046 | 0.68 | 0.47–0.99 |
Haplotypes | SA (n = 274) | Control (n = 672) | Χ2 | P | OR | 95% CI | ||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
CC | 134 | 48.9 | 298 | 44.4 | 3.88 | 0.077 | 1.19 | 1.01–1.42 |
CT | 87 | 31.6 | 184 | 27.4 | 3.376 | 0.066 | 1.22 | 1.00–1.48 |
TT | 39 | 14.2 | 139 | 20.7 | 10.684 | 0.00016 | 0.63 | 0.50–0.80 |
TC | 14 | 5.4 | 51 | 7.6 | 2.94 | 0.086 | 0.69 | 0.48–0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeles-Martínez, J.; Posadas-Sánchez, R.; Bravo-Flores, E.; González-Salazar, M.d.C.; Vargas-Alarcón, G. Common Variants in IL-20 Gene are Associated with Subclinical Atherosclerosis, Cardiovascular Risk Factors and IL-20 Levels in the Cohort of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomolecules 2020, 10, 75. https://doi.org/10.3390/biom10010075
Angeles-Martínez J, Posadas-Sánchez R, Bravo-Flores E, González-Salazar MdC, Vargas-Alarcón G. Common Variants in IL-20 Gene are Associated with Subclinical Atherosclerosis, Cardiovascular Risk Factors and IL-20 Levels in the Cohort of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomolecules. 2020; 10(1):75. https://doi.org/10.3390/biom10010075
Chicago/Turabian StyleAngeles-Martínez, Javier, Rosalinda Posadas-Sánchez, Eyerahi Bravo-Flores, María del Carmen González-Salazar, and Gilberto Vargas-Alarcón. 2020. "Common Variants in IL-20 Gene are Associated with Subclinical Atherosclerosis, Cardiovascular Risk Factors and IL-20 Levels in the Cohort of the Genetics of Atherosclerotic Disease (GEA) Mexican Study" Biomolecules 10, no. 1: 75. https://doi.org/10.3390/biom10010075
APA StyleAngeles-Martínez, J., Posadas-Sánchez, R., Bravo-Flores, E., González-Salazar, M. d. C., & Vargas-Alarcón, G. (2020). Common Variants in IL-20 Gene are Associated with Subclinical Atherosclerosis, Cardiovascular Risk Factors and IL-20 Levels in the Cohort of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomolecules, 10(1), 75. https://doi.org/10.3390/biom10010075