# On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Method

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Version 5.7.1). Available online: http://physics.nist.gov/asd/ (accessed on 1 October 2020).
- Griem, H.R. Plasma Spectroscopy; McGraw-Hill Book Company: New York, NY, USA, 1964. [Google Scholar]
- Griem, H.R. Spectral Line Broadening by Plasmas; Academic: New York, NY, USA, 1974. [Google Scholar]
- Baronets, P.N.; Bykova, N.G. Diagnostics of the plasma in a high power induction plasmatron by the intensity and broadening of spectral lines. J. Appl. Spectrosc.
**1991**, 54, 399–403. [Google Scholar] [CrossRef] - Bernhardt, J.; Liu, W.; Théberge, F.; Xu, H.L.; Daigle, J.F.; Châteauneuf, M.; Dubois, J.; Chin, S.L. Spectroscopic analysis of femtosecond laser plasma filament in air. Opt. Commun.
**2008**, 281, 1268–1274. [Google Scholar] [CrossRef] - Sainct, F.P.; Urabe, K.; Pannier, E.; Lacoste, D.A.; Laux, C.O. Electron number density measurements in nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure. Plasma Sources Sci. Technol.
**2020**, 29, 025017. [Google Scholar] [CrossRef] - Ralchenko, Y.V.; Griem, H.R.; Bray, I. Electron-impact broadening of the 3s-3p lines in low-Z Li-like ions. J. Quant. Spectrosc. Radiat. Transf.
**2003**, 81, 371–384. [Google Scholar] [CrossRef][Green Version] - Finney, L.A.; Skrodzki, P.J.; Burger, M.; Xiao, X.; Nees, J.; Jovanovic, I. Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime. Opt. Express
**2018**, 26, 29110–29122. [Google Scholar] [CrossRef] [PubMed] - Burger, M.; Skrodzki, P.J.; Jovanovic, I.; Phillips, M.C.; Harilal, S.S. Laser-produced uranium plasma characterization and Stark broadening measurements. Phys. Plasmas
**2019**, 26, 093103. [Google Scholar] [CrossRef] - Ilyin, A.A.; Golik, S.S.; Shmirko, K.A.; Mayor, A.Y.; Proschenko, D.Y.; Kulchin, Y.N. Broadening and shift of emission lines in a plasma of filaments generated by a tightly focused femtosecond laser pulse in air. Quantum Electron.
**2018**, 48, 149. [Google Scholar] [CrossRef] - Compton, R.; Filin, A.; Romanov, D.A.; Levis, R.J. Dynamic Rabi sidebands in laser-generated microplasmas: Tunability and control. Phys. Rev. A
**2011**, 83, 053423. [Google Scholar] [CrossRef][Green Version] - Stambulchik, E.; Maron, Y. Plasma line broadening and computer simulations: A mini-review. High Energy Density Phys.
**2010**, 6, 9–14. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines. J. Quant. Spectrosc. Radiat. Transf.
**2006**, 99, 730–749. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. Zeeman effect induced by intense laser light. Phys. Rev. Lett.
**2014**, 113, 083002. [Google Scholar] [CrossRef] [PubMed] - Seidel, J.; Stamm, R. Effects of radiator motion on plasma-broadened hydrogen Lyman-β. J. Quant. Spectrosc. Radiat. Transf.
**1982**, 27, 499–503. [Google Scholar] [CrossRef] - Rosato, J.; Capes, H.; Stamm, R. Ideal Coulomb plasma approximation in line shape models: Problematic issues. Atoms
**2014**, 2, 253–258. [Google Scholar] [CrossRef][Green Version] - Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.
**1967**, 159, 98–103. [Google Scholar] [CrossRef] - Stambulchik, E.; Fisher, D.V.; Maron, Y.; Griem, H.R.; Alexiou, S. Correlation effects and their influence on line broadening in plasmas: Application to H
_{α}. High Energy Density Phys.**2007**, 3, 272–277. [Google Scholar] [CrossRef] - Ferri, S.; Calisti, A.; Mossé, C.; Rosato, J.; Talin, B.; Alexiou, S.; Gigosos, M.A.; González, M.Á.; González-Herrero, D.; Lara, N.; et al. Ion dynamics effect on Stark broadened line shapes: A cross comparison of various models. Atoms
**2014**, 2, 299–318. [Google Scholar] [CrossRef] - Sahal-Bréchot, S.; Stambulchik, E.; Dimitrijević, M.S.; Alexiou, S.; Duan, B.; Bonifaci, N. The Third and Fourth Workshops on Spectral Line Shapes in Plasma Code Comparison: Isolated lines. Atoms
**2018**, 6, 30. [Google Scholar] [CrossRef][Green Version] - Rosenbusch, P.; Ghezali, S.; Dzuba, V.A.; Flambaum, V.V.; Beloy, K.; Derevianko, A. AC Stark shift of the Cs microwave atomic clock transitions. Phys. Rev. A
**2009**, 79, 013404. [Google Scholar] [CrossRef][Green Version] - Le Kien, F.; Schneeweiss, P.; Rauschenbeutel, A. Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium. Eur. Phys. J. D
**2013**, 67, 92. [Google Scholar] [CrossRef][Green Version] - Svidzinsky, A.A.; Eleuch, H.; Scully, M.O. Rabi oscillations produced by adiabatic pulse due to initial atomic coherence. Opt. Lett.
**2017**, 42, 65–68. [Google Scholar] [CrossRef] - Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Heck, G.; Filin, A.; Romanov, D.A.; Levis, R.J. Decoherence of Rabi oscillations in laser-generated microplasmas. Phys. Rev. A
**2013**, 87, 023419. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**The Stark width (FWHM) and shift of the O I 777-nm line assuming a plasma with ${n}_{e}={10}^{16}\mathrm{c}{\mathrm{m}}^{-3}$. Shown are results for a one-component electron plasma (“e”) and those for a proton-electron one (“e+p”). “Griem [1974]” stands for [3], “SimU” labels our results. The error bars indicate estimated uncertainties of our calculations.

**Figure 2.**Effect of the nearly resonant laser field on the lineshape. A 805-nm laser radiation (as in [5]) is assumed. All spectra are area-normalized.

**Figure 3.**Comparison of the effect of nearly resonant ($\lambda =1064\mathrm{n}\mathrm{m}$) and non-resonant ($\lambda =532\mathrm{n}\mathrm{m}$) laser fields on the lineshape. Laser irradiation intensity of ${10}^{10}\mathrm{W}/\mathrm{c}{\mathrm{m}}^{2}$ is assumed. All spectra are area-normalized.

**Figure 4.**Time-dependent populations (i.e., the diagonal density-matrix elements) of the O I $3s$ and $3p$ states under influence of a picosecond, $\lambda =800\mathrm{n}\mathrm{m}$ laser pulse (upper panel) and under joint action of the same laser pulse and a plasma with ${n}_{e}={10}^{18}\mathrm{c}{\mathrm{m}}^{-3}$ and ${T}_{e}=1\mathrm{e}\mathrm{V}$ (lower panel). The laser envelope is shown by the dashed line. The quantization axis is parallel to the electric field of the laser.

**Figure 5.**Spectra calculated under two scenarios: only laser perturbation and laser and plasma fields together. $\pi $ and $\sigma $ polarizations are shown separately. The settings assumed are the same as in Figure 4.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Stambulchik, E.; Kroupp, E.; Maron, Y.; Malka, V. On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields. *Atoms* **2020**, *8*, 84.
https://doi.org/10.3390/atoms8040084

**AMA Style**

Stambulchik E, Kroupp E, Maron Y, Malka V. On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields. *Atoms*. 2020; 8(4):84.
https://doi.org/10.3390/atoms8040084

**Chicago/Turabian Style**

Stambulchik, Evgeny, Eyal Kroupp, Yitzhak Maron, and Victor Malka. 2020. "On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields" *Atoms* 8, no. 4: 84.
https://doi.org/10.3390/atoms8040084