# Stark-Zeeman Broadening of Spectral Line Shapes in Magnetized Plasmas

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Motional Stark Effect (MSE)

## 3. The Spectral Line

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Touati, K. Analyse Spectroscopique des Plasmas en présence d’un Champ Magnétique. Ph.D. Thesis, Université of Provence, Marseille, France, 2003. [Google Scholar]
- Rosato, J.; Marandet, Y.; Peiffer, A.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. Modeling of Stark-broadened lines in a fluctuating edge plasma. Contrib. Plasma Phys.
**2014**, 54, 565. [Google Scholar] [CrossRef] - Touati, K.; Meftah, M.T. Line Shapes in the Magnetized Plasmas. J. Mod. Phys.
**2012**, 3, 943–946. [Google Scholar] [CrossRef][Green Version] - Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Rosmej, F.; Stamm, R. Modeling of Stark Profiles in a Fluctuating Edge Tokamak Plasma. Contrib. Plasma. Phys.
**2006**. [Google Scholar] [CrossRef] - Hoe, N.; Drawin, H.W.; Herman, L. Effect of a Uniform Magnetic Field on the Line Profiles of the Hydrogen. J. Quant. Spectrosc. Transf. Radiat.
**1967**, 7, 429. [Google Scholar] [CrossRef] - Griem, H.R.; Kolb, A.; Chen, Y. Stark broadening of neutral helium lines in a plasma. Phys. Rev.
**1959**, 116, 4. [Google Scholar] [CrossRef] - Griem, H.R.; et Blaha, M.; Keepple, P.C. Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas. Phys. Rev. A
**1979**, 19, 2421. [Google Scholar] [CrossRef] - Alexiou, S. Erratum: Z scaling of the 3P-3S Li isoelectronic series transition: Quadrupole Stark broadening and resonances. Phys. Rev. A
**1994**, 49, 106. [Google Scholar] [CrossRef] [PubMed] - Alexiou, S. Line Shapes in a Magnetic Field: Trajectory Modifications I: Electrons. Atoms
**2019**, 7, 52. [Google Scholar] [CrossRef][Green Version] - Alexiou, S. Line Shapes in a Magnetic Field: Trajectory Modifictions II: Full Collision-Time Statistics. Atoms
**2019**, 7, 94. [Google Scholar] [CrossRef][Green Version] - Brissaud, A.; Goldbach, C.; Léorat, J.; Mazure, A.; Nollez, G. On the validity of the model microfield method as applied to Stark broadening of neutral lines. J. Phys. B
**1976**, 9. [Google Scholar] [CrossRef] - Berestetskii, V.B.; Lifchitz, E.M.; Pitaevskii, L.P. Course of Theoretical Physics, 2nd ed.; Pergamon Press: Oxford, UK, 1982; Volume 4, Chapter V, Section 51. [Google Scholar]
- Bouguettaia, H.; Chihi, I.; Chenini, K.; Meftah, M.T.; Khelfaoui, F.; Stamm, R. Application of path integral formalism in spectral line broadening: Lyman-α in hydrogenic plasma. JQSRT
**2005**, 94, 335–346. [Google Scholar] [CrossRef] - Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]

**Figure 2.**Lyman Alpha line in the hydrogen plasma with the Motional Stark Effect (MSE) and without the Doppler and fine structure effects.

**Figure 3.**Lyman Alpha line in the hydrogen plasma with the MSE and Doppler effects and without the fine structure effect.

**Figure 4.**Lyman Alpha line in the hydrogen plasma: A comparison between with and without the MSE. With the Doppler effects and without the fine structure effect. The same plasma conditions are the same as Figure 3.

**Figure 5.**Lyman Alpha line in the hydrogen plasma: The electron density effect with the MSE effect and without Doppler and fine structure effects.

**Figure 6.**Lyman Alpha line in the hydrogen plasma: The electron temperature effect on the line with the MSE effect without the Doppler effect and fine structure effects.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Touati, K.A.; Chenini, K.; Meftah, M.T. Stark-Zeeman Broadening of Spectral Line Shapes in Magnetized Plasmas. *Atoms* **2020**, *8*, 91.
https://doi.org/10.3390/atoms8040091

**AMA Style**

Touati KA, Chenini K, Meftah MT. Stark-Zeeman Broadening of Spectral Line Shapes in Magnetized Plasmas. *Atoms*. 2020; 8(4):91.
https://doi.org/10.3390/atoms8040091

**Chicago/Turabian Style**

Touati, Kamel Ahmed, Keltoum Chenini, and Mohammed Tayeb Meftah. 2020. "Stark-Zeeman Broadening of Spectral Line Shapes in Magnetized Plasmas" *Atoms* 8, no. 4: 91.
https://doi.org/10.3390/atoms8040091