Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential
Abstract
:1. Introduction
2. Theory
2.1. Scattering Amplitude and Cross Sections
2.2. Complex Optical Potential
3. Results and Discussion
3.1. Electron-H2S Differential Cross Sections
3.2. Electron-H2S Integral and Momentum Transfer Cross Section
3.3. Electron-H2S Absorption and Total Cross Section
3.4. Positron-H2S Differential Cross Section
3.5. Positron-H2S Elastic, Momentum, Absorption and Total Cross Section
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bockelée-Morvan, D.; Colom, P.; Crovisier, J.; Despois, D.; Paubert, G. Microwave detection of hydrogen sulphide and methanol in comet Austin (1989c1). Nature 1991, 350, 318–320. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Toledo, D.; Garland, R.; Teanby, N.A.; Fletcher, L.N.; Orton, G.A.; Bézard, B. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2018, 2, 420–427. [Google Scholar] [CrossRef]
- Phuong, N.T.; Chapillon, E.; Majumdar, L.; Dutrey, A.; Guilloteau, S.; Piétu, V.; Wakelam, V.; Diep, P.N.; Tang, Y.-W.; Beck, T.; et al. First detection of H2S in a protoplanetary disk. Astron. Astrophys. 2018, 616, L5. [Google Scholar] [CrossRef] [Green Version]
- Chupp, E.L.; Forrest, D.J.; Higbie, P.R.; Suri, A.N.; Tsai, C.; Dunphy, P.P. Solar Gamma Ray Lines observed during the Solar Activity of August 2 to August 11, 1972. Nature 1973, 241, 333–335. [Google Scholar] [CrossRef]
- Leventhal, M.; MacCallum, C.J.; Stang, P.D. Detection of 511 keV positron annihilation radiation from the galactic center direction. Astrophys. J. 1978, 225, L11–L14. [Google Scholar] [CrossRef]
- Trajmar, S.; Register, D.F.; Chutjian, A. Electron scattering by molecules II. Experimental methods and data. Phys. Rep. 1983, 97, 219–356. [Google Scholar] [CrossRef]
- Wang, R.; Fan, Q.; Zhang, J.; Zhang, X.; Kang, Y.; Wang, Z. Hydrogen Sulfide Demonstrates Promising Antitumor Efficacy in Gastric Carcinoma by Targeting MGAT5 1,2. Transl. Oncol. 2018, 11, 900–910. [Google Scholar] [CrossRef]
- Wen, Y.-D.; Wang, H.; Zhu, Y.-Z. The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease. Oxid. Med. Cell. Longev. 2018, 2018, 4010395. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Baró, J.; Sempau, J.; Fernández-Varea, J.M.; Salvat, F. PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Methods Phys. Res. B 1995, 100, 31–46. [Google Scholar] [CrossRef]
- Blanco, F.; Muñoz, A.; Almeida, D.; da Silva, F.F.; Limão-Vieira, P.; Fuss, M.C.; Sanz, A.G.; García, G. Modelling low energy electron and positron tracks in biologically relevant media. Eur. Phys. J. D 2013, 67, 199. [Google Scholar] [CrossRef]
- Ruset, C.; Bloyce, A.; Bell, T. Plasma nitrocarburising with nitrogen, hydrogen, and hydrogen sulphide gas mixtures. Surf. Eng. 1995, 11, 308–314. [Google Scholar] [CrossRef]
- Gulley, R.J.; Brunger, M.J.; Buckman, S.J. The scattering of low energy electrons from hydrogen sulphide. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 2913–2925. [Google Scholar] [CrossRef]
- Rawat, P.; Iga, I.; Lee, M.-T.; Brescansin, L.M.; Homem, M.G.P.; Machado, L.E. Cross sections for elastic electron–hydrogen sulfide collisions in the low- and intermediate-energy range. Phys. Rev. A 2003, 68, 052711. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Park, S.J.; Park, Y.S. Measurements of elastic electron scattering by hydrogen sulfide extended to backward angles. J. Korean Phys. Soc. 2005, 46, 431–434. [Google Scholar]
- Brescansin, L.M.; Machado, L.E.; Lee, M.-T.; Cho, H.; Park, Y.S. Absorption effects in intermediate-energy electron scattering by hydrogen sulphide. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 185201. [Google Scholar] [CrossRef]
- Varella, M.T.d.N.; Bettega, M.H.F.; Lima, M.A.P.; Ferreira, L.G. Low-energy electron scattering by H2O, H2S, H2Se, and H2Te. J. Chem. Phys. 1999, 111, 6396–6406. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.E.; Leal, E.P.; Mu-Tao, L.; Brescansin, L.M. Low energy elastic scattering of electrons by hydrogen sulphide molecules. J. Mol. Struct. THEOCHEM 1995, 335, 37–43. [Google Scholar] [CrossRef]
- Jain, A.K.; Tripathi, N.; Jain, A. Elastic scattering ofelectrons by H2S at 50—1000 eV. Phys. Rev. A 1990, 42, 6912–6915. [Google Scholar] [CrossRef]
- Gianturco, F.A. Ab initio model calculations to treat electron scattering from polar polyatomic targets: H2S and NH3. J. Phys. B At. Mol. Opt. Phys. 1991, 24, 4627–4648. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z. Electron scattering with H2S and PH3 molecules. Zeitschrift Für Phys. D Atoms Mol. Clust. 1993, 28, 207–214. [Google Scholar] [CrossRef]
- Nishimura, T.; Itikawa, Y. Vibrationally elastic and inelastic scattering of electrons by hydrogen sulphide molecules. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 4213–4226. [Google Scholar] [CrossRef]
- Gupta, M.; Baluja, K.L. Application of R-matrix method to electron-H2S collisions in the low energy range. Eur. Phys. J. D 2007, 41, 475–483. [Google Scholar] [CrossRef]
- Aouchiche, H.; Medegga, F.; Champion, C. Doubly differential and integral cross sections for electron elastic scattering by hydrogen sulfide. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 333, 113–119. [Google Scholar] [CrossRef]
- Jain, A.; Baluja, K.L. Total (elastic plus inelastic) cross sections for electron scattering from diatomic and polyatomic molecules at 10—5000 eV: H2, Li2, HF, CH4, N2, CO, C2H2, HCN, O2, HC1, H2S, PH3, SiH4, and CO2. Phys. Rev. A 1992, 45, 202–218. [Google Scholar] [CrossRef]
- Szmytkowski, C.; Mozejko, P.; Krzysztofowicz, A. Measurements of absolute total cross sections for electron scattering from triatomic polar molecules: SO2 and H2S. Radiat. Phys. Chem. 2003, 68, 307–311. [Google Scholar] [CrossRef]
- Zecca, A.; Karwasz, G.P.; Brusa, R.S. Total-cross-section measurements for electron scattering by NH3, SiH4, and H2S in the intermediate-energy range. Phys. Rev. A 1992, 45, 2777–2783. [Google Scholar] [CrossRef]
- Joshipura, K.N.; Vinodkumar, M. Total cross sections of electron collisions with S atoms; H2S, OCS and SO2 molecules (E i ≥ 50 eV). Z. Phys. D 1997, 41, 133–137. [Google Scholar] [CrossRef]
- Limbachiya, C.; Vinodkumar, M.; Mason, N. Calculation of electron-impact rotationally elastic total cross sections for NH3, H2S, and PH3 over the energy range from 0.01 eV to 2 keV. Phys. Rev. A 2011, 83, 042708. [Google Scholar] [CrossRef] [Green Version]
- Joachain, C.J. Quantum Collision Theory, 3rd ed.; North Holland: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; Tata McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Milisavljević, S.; Šević, D.; Chauhan, R.K.; Pejčev, V.; Filipović, D.M.; Srivastava, R.; Marinković, B.P. Differential and integrated cross sections for the. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 2371–2384. [Google Scholar] [CrossRef]
- Tennyson, J. Electron-molecule collision calculations using the R-matrix method. Phys. Rep. 2010, 491, 29–76. [Google Scholar] [CrossRef]
- Gianturco, F.A.; Jain, A. The theory of electron scattering from polyatomic molecules. Phys. Rep. 1986, 143, 347–425. [Google Scholar] [CrossRef]
- Sanna, N.; Baccarelli, I.; Morelli, G. SCELib3.0: The new revision of SCELib, the parallel computational library of molecular properties in the Single Center Approach. Comput. Phys. Commun. 2009, 180, 2544–2549. [Google Scholar] [CrossRef]
- Gianturco, F.A.; Scialla, S. Local approximations of exchange interaction in electron-molecule collisions: The methane molecule. J. Phys. B At. Mol. Phys. 1987, 20, 3171–3189. [Google Scholar] [CrossRef]
- O’Connell, J.K.; Lane, N.F. Nonadjustable exchange-correlation model for electron scattering from closed-shell atoms and molecules. Phys. Rev. A 1983, 27, 1893–1903. [Google Scholar] [CrossRef]
- Padial, N.T.; Norcross, D.W. Parameter-free model of the correlation-polarization potential for electron-molecule collisions. Phys. Rev. A 1984, 29, 1742–1748. [Google Scholar] [CrossRef]
- Staszewska, G.; Schwenke, D.W.; Thirumalai, D.; Truhlar, D.G. Quasifree-scattering model for the imaginary part of the optical potential for electron scattering. Phys. Rev. A. 1983, 28, 2740–2751. [Google Scholar] [CrossRef]
- Jain, A. Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials. Phys. Rev. A 1990, 41, 2437–2444. [Google Scholar] [CrossRef]
- Reid, D.D.; Wadehra, J.M. A quasifree model for the absorption effects in positron scattering by atoms. J. Phys. B At. Mol. Opt. Phys. 1996, 29, L127–L133. [Google Scholar] [CrossRef]
- Bransden, B.H.; Joachain, C.J. Physics of Atoms and Molecules, 2nd ed.; Prentice Hall Pearson: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Das, T.; Stauffer, A.D.; Srivastava, R. A method to obtain static potentials for electron-molecule scattering. Eur. Phys. J. D 2014, 68, 102. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Stauffer, A.D.; Srivastava, R. Electron impact elastic scattering from methane and silane molecules. Eur. Phys. J. D 2019, 73, 189. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Srivastava, R. An approach to study electron and positron scattering from NH3 and PH3 using the analytic static potential. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 225204. [Google Scholar] [CrossRef]
- Tóth, I.; Campeanu, R.I.; Chiş, V.; Nagy, L. Screening effects in the ionization of molecules by positrons. Phys. Lett. A 2006, 360, 131–134. [Google Scholar] [CrossRef]
- Tóth, I.; Campeanu, R.I.; Nagy, L. Ionization of NH3 and CH4 by electron impact. Eur. Phys. J. D 2015, 69, 2. [Google Scholar] [CrossRef]
- Stevens, D.; Babij, T.J.; Machacek, J.R.; Buckman, S.J.; Brunger, M.J.; White, R.D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J.P. Positron scattering from pyridine. J. Chem. Phys. 2018, 148, 144308. [Google Scholar] [CrossRef]
- Olney, T.N.; Cann, N.M.; Cooper, G.; Brion, C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem. Phys. 1997, 223, 59–98. [Google Scholar] [CrossRef]
- Lias, S.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Lidez, D.R. CRC Handbook of Physics and Chemistry, 74th ed.; Chemical Rubber Company, Ed.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Da Paixo, F.J.; Lima, M.A.P.; McKoy, V. Spin exchange in elastic e-O2 collisions. Phys. Rev. Lett. 1992, 68, 1698–1701. [Google Scholar] [CrossRef] [Green Version]
- Makochekanwa, C.; Sueoka, O.; Kimura, M. Similarities and differences between electron and positron scattering from molecules. J. Phys. Conf. Ser. 2007, 80, 012012. [Google Scholar] [CrossRef]
Energy Eigenvalues (eV) | −91.82436 | −8.62558 | −6.31578 | −6.31354 | −6.31008 | −0.88948 | −0.50648 | −0.39461 | −0.28071 | |
---|---|---|---|---|---|---|---|---|---|---|
1s | 0.99783 | −0.35478 | 0.00000 | −0.00731 | 0.00000 | 0.08458 | 0.00000 | 0.04775 | 0.00000 | |
S | 2s | 0.00649 | 1.04753 | 0.00000 | 0.02175 | 0.00000 | −0.28399 | 0.00000 | −0.14345 | 0.00000 |
2px | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.98740 | 0.00000 | 0.00000 | 0.00000 | −0.30318 | |
2py | 0.00000 | 0.00000 | 0.98494 | 0.00000 | 0.00000 | 0.00000 | −0.18896 | 0.00000 | 0.00000 | |
2pz | −0.00017 | −0.01711 | 0.00000 | 0.98503 | 0.00000 | 0.05106 | 0.00000 | −0.22009 | 0.00000 | |
3s | −0.00087 | 0.04782 | 0.00000 | −0.01091 | 0.00000 | 0.79115 | 0.00000 | 0.61998 | 0.00000 | |
3px | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.04632 | 0.00000 | 0.00000 | 0.00000 | 1.03186 | |
3py | 0.00000 | 0.00000 | 0.05717 | 0.00000 | 0.00000 | 0.00000 | 0.54074 | 0.00000 | 0.00000 | |
3pz | 0.00016 | −0.00875 | 0.00000 | 0.05621 | 0.00000 | −0.12548 | 0.00000 | 0.68194 | 0.00000 | |
H1 | 1s | 0.00021 | −0.01041 | −0.01140 | 0.01169 | 0.00000 | 0.21629 | 0.48298 | −0.33510 | 0.00000 |
H2 | 1s | 0.00021 | −0.01041 | 0.01140 | 0.01169 | 0.00000 | 0.21629 | −0.48298 | −0.33510 | 0.00000 |
Atom | Orbital | Exponent | Coefficient |
---|---|---|---|
S | 1s | 0.5529038289E + 04 | 0.9163596281E − 02 |
0.1013743118E + 04 | 0.4936149294E − 01 | ||
0.2836087927E + 03 | 0.1685383049E + 00 | ||
0.9742727471E + 02 | 0.3705627997E + 00 | ||
0.3783386178E + 02 | 0.4164915298E + 00 | ||
0.1558207360E + 02 | 0.1303340841E + 00 | ||
2s | 0.3455896791E + 03 | −0.1325278809E − 01 | |
0.6840121655E + 02 | −0.4699171014E − 01 | ||
0.2125904712E + 02 | −0.3378537151E − 01 | ||
0.8179121699E + 01 | 0.2502417861E + 00 | ||
0.3552198128E + 01 | 0.5951172526E + 00 | ||
0.1628232301E + 01 | 0.2407061763E + 00 | ||
2p | 0.3455896791E + 03 | 0.3759696623E − 02 | |
0.6840121655E + 02 | 0.3767936984E − 01 | ||
0.2125904712E + 02 | 0.1738967435E + 00 | ||
0.8179121699E + 01 | 0.4180364347E + 00 | ||
0.3552198128E + 01 | 0.4258595477E + 00 | ||
0.1628232301E + 01 | 0.1017082955E + 00 | ||
3s | 0.1294439442E + 02 | −0.7943126362E − 02 | |
0.3466625105E + 01 | −0.7100264172E − 01 | ||
0.1300021248E + 01 | −0.1785026925E + 00 | ||
0.5819134077E + 00 | 0.1510635058E + 00 | ||
0.2879592903E + 00 | 0.7354914767E + 00 | ||
0.1484042983E + 00 | 0.2760593123E + 00 | ||
3p | 0.1294439442E + 02 | −0.7139358907E − 02 | |
0.3466625105E + 01 | −0.1829277070E − 01 | ||
0.1300021248E + 01 | 0.7621621429E − 01 | ||
0.5819134077E + 00 | 0.4145098597E + 00 | ||
0.2879592903E + 00 | 0.4889621471E + 00 | ||
0.1484042983E + 00 | 0.1058816521E + 00 | ||
H | 1s | 0.3552322122E + 02 | 0.9163596281E − 02 |
0.6513143725E + 01 | 0.4936149294E − 01 | ||
0.1822142904E + 01 | 0.1685383049E + 00 | ||
0.6259552659E + 00 | 0.3705627997E + 00 | ||
0.2430767471E + 00 | 0.4164915298E + 00 | ||
0.1001124280E + 00 | 0.1303340841E + 00 |
DCS | ||||||||
---|---|---|---|---|---|---|---|---|
Angle (deg) | 15 eV | 20 eV | 50 eV | 100 eV | 150 eV | 200 eV | 300 eV | 500 eV |
0 | 25.1610 | 26.6501 | 34.0321 | 17.0130 | 18.1060 | 19.0440 | 21.5230 | 23.6450 |
5 | 24.1281 | 25.2460 | 29.9162 | 13.9210 | 13.5510 | 13.2680 | 13.1140 | 11.9590 |
10 | 21.2822 | 21.6572 | 21.4790 | 8.6657 | 7.3693 | 6.7151 | 5.9198 | 4.7034 |
15 | 17.5680 | 17.2411 | 14.1612 | 5.1474 | 4.0113 | 3.4772 | 2.7449 | 1.8663 |
20 | 13.8621 | 13.1460 | 9.0720 | 3.0349 | 2.1488 | 1.7617 | 1.2962 | 0.8442 |
30 | 8.0617 | 7.2216 | 2.9852 | 0.9611 | 0.6514 | 0.5354 | 0.3810 | 0.2470 |
40 | 4.3292 | 3.5418 | 0.5673 | 0.3287 | 0.2632 | 0.2117 | 0.1607 | 0.1305 |
50 | 2.0106 | 1.3875 | 0.0237 | 0.1466 | 0.1517 | 0.1334 | 0.1095 | 0.0689 |
60 | 0.7741 | 0.3847 | 0.0513 | 0.1302 | 0.1403 | 0.1156 | 0.0743 | 0.0419 |
70 | 0.2951 | 0.1135 | 0.1489 | 0.1692 | 0.1316 | 0.0905 | 0.0512 | 0.0302 |
80 | 0.2221 | 0.2033 | 0.2148 | 0.1839 | 0.0994 | 0.0608 | 0.0364 | 0.0236 |
90 | 0.2801 | 0.3758 | 0.2378 | 0.1484 | 0.0563 | 0.0348 | 0.0236 | 0.0201 |
100 | 0.3250 | 0.4784 | 0.2183 | 0.0799 | 0.0207 | 0.0165 | 0.0171 | 0.0189 |
110 | 0.3303 | 0.4674 | 0.1603 | 0.0174 | 0.0085 | 0.0145 | 0.0204 | 0.0207 |
120 | 0.3491 | 0.3908 | 0.0879 | 0.0037 | 0.0321 | 0.0358 | 0.0347 | 0.0252 |
130 | 0.4512 | 0.3237 | 0.0362 | 0.0692 | 0.0953 | 0.0811 | 0.0596 | 0.0318 |
140 | 0.6762 | 0.3374 | 0.0357 | 0.2189 | 0.1894 | 0.1444 | 0.0925 | 0.0391 |
150 | 1.0033 | 0.4515 | 0.0898 | 0.2462 | 0.2968 | 0.2150 | 0.1279 | 0.0464 |
160 | 1.3501 | 0.6156 | 0.1789 | 0.6397 | 0.3949 | 0.2796 | 0.1596 | 0.0527 |
170 | 1.6156 | 0.7661 | 0.2539 | 0.7997 | 0.4634 | 0.3249 | 0.1814 | 0.0569 |
180 | 1.7216 | 0.8306 | 0.2913 | 0.8589 | 0.4881 | 0.3415 | 0.1889 | 0.0579 |
ICS | 25.50 | 20.73 | 8.15 | 4.97 | 4.13 | 3.68 | 2.86 | 2.19 |
MTCS | 8.91 | 5.83 | 1.51 | 1.15 | 1.07 | 1.07 | 0.88 | 0.47 |
ACS | 0.55 | 1.44 | 5.12 | 5.02 | 4.18 | 3.59 | 2.83 | 1.99 |
TCS | 28.61 | 24.76 | 15.33 | 10.41 | 8.19 | 6.94 | 5.42 | 3.89 |
DCS | ||||
---|---|---|---|---|
Angle (deg) | 20 eV | 50 eV | 100 eV | 500 eV |
0 | 16.7280 | 15.7601 | 15.0310 | 16.439 |
5 | 14.3860 | 10.8720 | 7.0699 | 1.0818 |
10 | 9.3056 | 4.2009 | 1.4995 | 2.3921 |
15 | 5.0222 | 1.3262 | 0.4113 | 2.2818 |
20 | 2.4881 | 0.3603 | 0.5887 | 1.1657 |
30 | 0.4157 | 0.3904 | 0.8018 | 0.2895 |
40 | 0.1007 | 0.5507 | 0.5577 | 0.1292 |
50 | 0.2471 | 0.4176 | 0.1975 | 0.0648 |
60 | 0.3645 | 0.2342 | 0.1214 | 0.0384 |
70 | 0.3504 | 0.1311 | 0.0982 | 0.0227 |
80 | 0.2744 | 0.0956 | 0.0778 | 0.0171 |
90 | 0.1868 | 0.0862 | 0.0584 | 0.0119 |
100 | 0.1259 | 0.0799 | 0.0447 | 0.0095 |
110 | 0.0927 | 0.0711 | 0.0364 | 0.0078 |
120 | 0.0796 | 0.0616 | 0.0311 | 0.0064 |
130 | 0.0785 | 0.0532 | 0.0275 | 0.0059 |
140 | 0.0817 | 0.0472 | 0.0248 | 0.0049 |
150 | 0.0852 | 0.0434 | 0.0229 | 0.0047 |
160 | 0.0870 | 0.0416 | 0.0219 | 0.0043 |
170 | 0.0889 | 0.0398 | 0.0208 | 0.0041 |
180 | 0.0893 | 0.0394 | 0.0206 | 0.0048 |
ICS | 9.01 | 6.30 | 4.45 | 1.28 |
MTCS | 1.86 | 1.15 | 0.72 | 0.17 |
ACS | 14.03 | 10.09 | 7.24 | 2.66 |
TCS | 23.04 | 16.39 | 11.69 | 3.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahato, D.; Sharma, L.; Srivastava, R. Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential. Atoms 2020, 8, 83. https://doi.org/10.3390/atoms8040083
Mahato D, Sharma L, Srivastava R. Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential. Atoms. 2020; 8(4):83. https://doi.org/10.3390/atoms8040083
Chicago/Turabian StyleMahato, Dibyendu, Lalita Sharma, and Rajesh Srivastava. 2020. "Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential" Atoms 8, no. 4: 83. https://doi.org/10.3390/atoms8040083
APA StyleMahato, D., Sharma, L., & Srivastava, R. (2020). Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential. Atoms, 8(4), 83. https://doi.org/10.3390/atoms8040083