Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Samples
2.3. Data Collection and Treatment
3. Results
3.1. Investigation of the Acquired Spectra
3.2. Plastics Identification Using the Principal Component Analysis (PCA)
3.3. Plastics Identification Using Linear Discriminant Analysis (LDA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lex Access to European Union law. Available online: https://eur-lex.europa.eu/eli/dec/1997/129/oj (accessed on 17 July 2019).
- Palagas, C.; Stavropoulos, P.; Couris, S.; Angelopoulos, G.N.; Kolm, I. Investigation of the Parameters Influencing the Accuracy of Rapid Steelmaking Slag Analysis with Laser-Induced Breakdown Spectroscopy. Steel Res. Int. 2007, 78, 693–703. [Google Scholar] [CrossRef]
- Noll, R.; Bette, H.; Brysch, A.; Kraushaar, M.; Mönch, I.; Peter, L.; Sturm, V. Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 637–649. [Google Scholar] [CrossRef]
- Hermann, J.; Lorusso, A.; Perrone, A.; Strafella, F.; Dutouquet, C.; Torralba, B. Simulation of emission spectra from nonuniform reactive laser-induced plasmas. Phys. Rev. E 2015, 92, 053103. [Google Scholar] [CrossRef] [PubMed]
- Couris, S.; Hatziapostolou, A.; Anglos, D.; Mavromanolakis, A.; Fotakis, C. Laser-induced breakdown spectroscopy (LIBS) Applications in environmental issues. In Proceedings of the ALT 96 International Symposium on Laser Methods for Biomedical Applications, Heraklion, Crete, Greece, 8 November 1996; Volume 2965. [Google Scholar]
- Gaudiuso, R.; Dell’Aglio, M.; Pascale, O.D.; Senesi, G.S.; Giacomo, A.D. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results. Sensors 2010, 10, 7434–7468. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, P.; Palagas, C.; Angelopoulos, G.; Papamantellos, D.; Couris, S. Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1885–1892. [Google Scholar] [CrossRef]
- Michalakou, A.; Stavropoulos, P.; Couris, S. Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures. Appl. Phys. Lett. 2008, 92, 081501. [Google Scholar] [CrossRef]
- Kotzagianni, M.; Couris, S. Femtosecond laser induced breakdown for combustion diagnostics. Appl. Phys. Lett. 2012, 100, 264104. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Michalakou, A.; Skevis, G.; Couris, S. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1092–1097. [Google Scholar] [CrossRef]
- Anglos, D.; Couris, S.; Fotakis, C. Laser diagnostics of painted artworks: Laser-induced breakdown spectroscopy in pigment identification. Appl. Spectrosc. 1997, 51, 1025–1030. [Google Scholar] [CrossRef]
- Ciupiński, Ł.; Fortuna-Zaleśna, E.; Garbacz, H.; Koss, A.; Kurzydłowski, K.; Marczak, J.; Mróz, J.; Onyszczuk, T.; Rycyk, A.; Sarzyński, A.; et al. Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensors 2010, 10, 4926–4949. [Google Scholar] [CrossRef]
- Fotakis, C.; Anglos, D.; Couris, S.; Georgiou, S.; Zafiropulos, V.; Zergioti, I. Laser technology in art conservation. AIP Conf. Proc. 1997, 388, 183–190. [Google Scholar]
- Sattmann, R.; Mönch, I.; Krause, H.; Noll, R.; Couris, S.; Hatziapostolou, A.; Mavromanolakis, A.; Fotakis, C.; Larrauri, E.; Miguel, R. Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectrosc. 1998, 52, 456–461. [Google Scholar] [CrossRef]
- Anzano, J.; Casanova, M.; Bermúdez, M.; Lasheras, R. Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS). Polym. Test. 2006, 25, 623–627. [Google Scholar] [CrossRef]
- Gondal, M.; Siddiqui, M. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A 2007, 42, 1989–1997. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Y.; Du, Y.; Tang, S.; Guo, L.; Li, X.; Lu, Y.; Zeng, X. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means. Plasma Sci. Technol. 2018, 20, 065505. [Google Scholar] [CrossRef] [Green Version]
- Boueri, M.; Motto-Ros, V.; Lei, W.; Ma, Q.; Zheng, L.; Zeng, H.; Yu, J. Identification of polymer materials using laser-induced breakdown spectroscopy combined with Artificial Neural Networks. Appl. Spectrosc. 2011, 65, 307–314. [Google Scholar] [CrossRef]
- Lasheras, R.; Bello-Gálvez, C.; Anzano, J. Identification of polymers by libs using methods of correlation and normalized coordinates. Polym. Test. 2010, 29, 1057–1064. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, Y.; Sun, Q.; Tang, S.; Li, J.; Guo, L.; Duan, J. Industrial polymers classification using laser-induced breakdown spectroscopy combined with self-organizing maps and K-means algorithm. Optik 2018, 165, 179–185. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H.; Li, H. Chemometrics in laser-induced breakdown spectroscopy. J. Chemom. 2018, 32, e2983. [Google Scholar] [CrossRef]
- Stepputat, M.; Noll, R. On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry. Appl. Optics 2003, 42, 6210. [Google Scholar] [CrossRef]
- Radivojevic, I.; Niessner, R.; Haisch, C.; Florek, S.; Becker-Ross, H.; Panne, U. Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 335–343. [Google Scholar] [CrossRef]
- Barbier, S.; Perrier, S.; Freyermuth, P.; Perrin, D.; Gallard, B.; Gilon, N. Plastic identification based on molecular and elemental information from laser induced breakdown spectra: A comparison of plasma conditions in view of efficient sorting. Spectrochim. Acta Part B At. Spectrosc. 2013, 88, 167–173. [Google Scholar] [CrossRef]
- Suplee, C. Atomic Spectra Database. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 17 July 2019).
- Asimellis, G.; Giannoudakos, A.; Kompitsas, M. Near-IR bromine laser induced breakdown spectroscopy detection and ambient gas effects on emission line asymmetric Stark broadening and shift. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 1270–1278. [Google Scholar] [CrossRef]
- Radziemski, L.; Cremers, D.A.; Benelli, K.; Khoo, C.; Harris, R.D. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 237–248. [Google Scholar] [CrossRef]
- Lex Access to European Union law. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 (accessed on 17 July 2019).
- Lex Access to European Union law. Available online: http://data.europa.eu/eli/dir/2012/19/oj (accessed on 17 July 2019).
- Acquaviva, S.; Giorgi, M.D. Temporal and spatial analysis of plasmas during graphite laser ablation in low-pressure N2. Appl. Surf. Sci. 2002, 197–198, 21–26. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine Learning in Python. ArXiv, 2019; arXiv:1201.0490. Available online: https://arxiv.org/abs/1201.0490(accessed on 17 July 2019).
- Trautner, S.; Jasik, J.; Parigger, C.G.; Pedarnig, J.D.; Spendelhofer, W.; Lackner, J.; Veis, P.; Heitz, J. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands. Spectrochim. Acta Part B At. Spectrosc. 2017, 174, 331–338. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Farsani, M.H.; Darbani, S.M.R.; Mousaviazar, A.; Soltanolkotabi, M.; Majd, A.E. CN and C2 vibrational spectra analysis in molecular LIBS of organic materials. Appl. Phys. B 2016, 122, 106. [Google Scholar] [CrossRef]
- Noll, R. Bulk analysis of nonconducting materials. In Laser-Induced Breakdown Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2012; pp. 275–386. [Google Scholar]
- Grégoire, S.; Boudinet, M.; Pelascini, F.; Surma, F.; Detalle, V.; Holl, Y. Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 2011, 400, 3331–3340. [Google Scholar] [CrossRef]
- De Giacomo, A.; Hermann, J. Laser-induced plasma emission: From atomic to molecular spectra. J. Phys. D Appl. Phys. 2017, 50, 183002. [Google Scholar] [CrossRef]
- Fernández-Bravo, Á.; Delgado, T.; Lucena, P.; Laserna, J.J. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochim. Acta Part B At. Spectrosc. 2013, 89, 77–83. [Google Scholar] [CrossRef]
- Aldea, E.; Caricato, A.P.; Dinescu, G.; Luches, A.; Perrone, A. Optical emission diagnostic of laser-induced plasma during CNX film deposition. Japanese J. Appl. Phys. 1997, 36, 4686–4689. [Google Scholar] [CrossRef]
- Witte, M.J.; Parigger, C.G. Laser-induced spectroscopy of graphene ablation in air. J. Phys. Conf. Ser. 2014, 548, 012052. [Google Scholar] [CrossRef]
- Negre, E.; Motto-Ros, V.; Pelascini, F.; Yu, J. Classification of plastic materials by imaging laser-induced ablation plumes. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 132–141. [Google Scholar] [CrossRef]
Code | Contents |
---|---|
0 | Matrix |
1 | 2% Barite |
2 | 2% Silica |
3 | 25% Mg(OH)2 |
4 | 10% DBDPE |
5 | 20% DBDPE |
6 | 10% Oligomeric Epoxy with TBBPA |
7 | 20% Oligomeric Epoxy with TBBPA |
8 | 10% TBBPA |
9 | 20% TBBPA |
10 | 5% HBCD |
11 | 12% Brominated Trimethylphenyl Indane |
Predicted Class | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Actual Class | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
5 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Predicted Class | |||
---|---|---|---|
Non-Brominated | Brominated | ||
Actual Class | Non-Brominated | 26 | 0 |
Brominated | 0 | 46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefas, D.; Gyftokostas, N.; Bellou, E.; Couris, S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms 2019, 7, 79. https://doi.org/10.3390/atoms7030079
Stefas D, Gyftokostas N, Bellou E, Couris S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms. 2019; 7(3):79. https://doi.org/10.3390/atoms7030079
Chicago/Turabian StyleStefas, Dimitrios, Nikolaos Gyftokostas, Elli Bellou, and Stelios Couris. 2019. "Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification" Atoms 7, no. 3: 79. https://doi.org/10.3390/atoms7030079
APA StyleStefas, D., Gyftokostas, N., Bellou, E., & Couris, S. (2019). Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms, 7(3), 79. https://doi.org/10.3390/atoms7030079