Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device
Abstract
:1. Introduction
2. LHD Project Entering Deuterium Experiment Phase
3. Conceptual Design of the LHD-Type Helical Fusion Reactor FFHR-d1
4. LHD as a Platform for Wide-Ranging Plasma Research
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; et al. Extension of the operational regime of the LHD towards a deuterium experiment. Nucl. Fusion 2017, 57, 102023. [Google Scholar] [CrossRef]
- Yokoyama, M. History and status of helical fusion research. OHM Magazine, 5 December 2017; 18–23. (In Japanese) [Google Scholar]
- Klinger, T.; Alonso, A.; Bozhenkov, S.; Burhenn, R.; Dinklage, A.; Fuchert, G.; Geiger, G.; Grulke, O.; Langenberg, A.; Hirsch, M.; et al. Performance and properties of the first plasmas of Wendelstein 7-X. Plasma Phys. Control. Fusion 2017, 59, 014018. [Google Scholar] [CrossRef]
- Vargas, V.I.; Mora, J.; Asenjo, J.; Zamora, E.; Otarola, C.; Barillas, L.; Carvajal-Godínez, J.; González-Gómez, J.; Soto-Soto, C.; Piedras, C. Constructing a small modular stellarator in Latin America. J. Phys. Conf. Ser. 2015, 591, 012016. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shimizu, A.; Isobe, M.; Okamura, S.; Nishimura, S.; Suzuki, C.; Xu, Y.; Zhang, X.; Liu, B.; Huang, J.; et al. Magnetic Configuration and Modular Coil Design for the Chinese First Quasi-Axisymmetric Stellarator. Plasma Fusion Res. 2018, 13, 3405067. [Google Scholar] [CrossRef]
- Takeiri, Y. Prospect Toward Steady-State Helical Fusion Reactor Based on Progress of LHD Project Entering the Deuterium Experiment Phase. IEEE Trans. Plasma Sci. 2018, 46, 1141–1148. [Google Scholar] [CrossRef]
- Takeiri, Y. The Large Helical Device—Entering Deuterium Experiment Phase Toward Steady-State Helical Fusion Reactor Based on Achievements in Hydrogen Experiment Phase. IEEE Trans. Plasma Sci. 2018, 46, 2348–2353. [Google Scholar] [CrossRef]
- Seki, T.; Mutoh, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Nomura, G.; Zhao, Y.; Wang, S.; LHD Experiment Group. ICRF Heating Experiment on LHD in Foreseeing a Future Fusion Device. Plasma Fusion Res. 2015, 10, 3405046. [Google Scholar] [CrossRef]
- Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T.I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; et al. Realization of high Ti plasmas and confinement characteristics of ITB plasmas in the LHD deuterium experiments. Nucl. Fusion 2018, 58, 106028. [Google Scholar] [CrossRef]
- Osakabe, M.; Isobe, M.; Tanaka, M.; Motojima, G.; Tsumori, K.; Yokoyama, M.; Morisaki, T.; Takeiri, Y.; LHD Experiment Group. Preparation and Commissioning for the LHD Deuterium Experiment. IEEE Trans. Plasma Sci. 2018, 46, 2324–2331. [Google Scholar] [CrossRef]
- Nakata, M.; Nunami, M.; Sugama, H.; Watanabe, T.H. Isotope Effects on Trapped-Electron-Mode Driven Turbulence and Zonal Flows in Helical and Tokamak Plasmas. Phys. Rev. Lett. 2017, 118, 165002. [Google Scholar] [CrossRef]
- Warmer, F.; Takahashi, H.; Tanaka, K.; Yoshimura, Y.; Beidler, C.D.; Peterson, B.; Igami, H.; Ido, T.; Seki, R.; Nakata, M.; et al. Energy confinement of hydrogen and deuterium electron-root plasmas in the Large Helical Device. Nucl. Fusion 2018, 58, 106025. [Google Scholar] [CrossRef]
- Yamada, H.; Tanaka, K.; Tokuzawa, T.; Seki, R.; Suzuki, C.; Yokoyama, M.; Ida, K.; Yoshimura, M.; Fujii, K.; Yamaguchi, H.; et al. Characterization of Isotope Effect on Confinement of Dimensionally Similar NBI-Heated Plasmas in LHD. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/P3-5. [Google Scholar]
- Tanaka, K.; Nakata, M.; Ohtani, Y.; Tsujimura, T.I.; Takahashi, H.; Yokoyama, M.; Warmer, F.; The LHD Experiment Group. Isotope effects on confinement and turbulence in ECRH plasma of LHD. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/P3-6. [Google Scholar]
- Isobe, M.; Ogawa, K.; Nishitani, T.; Miyake, H.; Kobuchi, T.; Pu, N.; Kawase, H.; Takada, E.; Tanaka, T.; Li, S.; et al. Neutron Diagnostics in the Large Helical Device. IEEE Trans. Plasma Sci. 2018, 46, 2050–2058. [Google Scholar] [CrossRef]
- Isobe, M.; Ogawa, K.; Nishitani, T.; Pu, N.; Kawase, H.; Seki, R.; Nuga, H.; Takada, E.; Murakami, S.; Suzuki, Y.; et al. Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the large helical device. Nucl. Fusion 2018, 58, 082004. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nuga, H.; Kamio, S.; Fujiwara, Y.; Yamaguchi, H.; Kawase, H.; et al. Energetic-ion Confinement Studies by using Comprehensive Neutron Diagnostics in the Large Helical Device. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/P3-20. [Google Scholar]
- Bando, T.; Ohdachi, S.; Isobe, M.; Suzuki, Y.; Toi, K.; Nagaoka, K.; Takahashi, H.; Seki, R.; Du, X.D.; Ogawa, K.; et al. Excitation of helically-trapped-energetic-ion driven resistive interchange modes with intense deuterium beam injection and enhanced effect on beam ions/bulk plasmas of LHD. Plasma Phys. Control. Fusion 2018, 58, 082025. [Google Scholar] [CrossRef]
- Ohdachi, S.; Bando, T.; Nagaoka, K.; Takahashi, H.; Suzuki, Y.; Watanabe, K.Y.; Du, X.D.; Toi, K.; Osakabe, M.; Morisaki, T. Excitation mechanism of the energetic particle driven resistive interchange mode and strategy to control the mode in Large Helical Device. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/1-3Rb. [Google Scholar]
- Ida, K.; Sakamoto, R.; Yoshinuma, M.; Yamazaki, K.; Kobayashi, T.; The LHD Experiment Group. Isotope effect on impurity and bulk ion particle transport in the Large Helical Device. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/10-1. [Google Scholar]
- Oishi, T.; Morita, S.; Kobayashi, M.; Kawamura, G.; Liu, Y.; Goto, M.; The LHD Experiment Group. Effect of deuterium plasmas on carbon impurity transport in the edge stochastic magnetic field layer of Large Helical Device. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/P3-11. [Google Scholar]
- Watanabe, K.Y.; Sakakibara, S.; Narushima, Y.; Ohdachi, S.; Suzuki, Y.; Takemura, Y.; The LHD Experiment Group. Dependence of RMP penetration threshold on plasma parameters and ion species in helical plasmas. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper EX/P3-15. [Google Scholar]
- Ikeda, K. Exploring Deuterium Beam Operation and Behavior of Co-Extracted Electron in Negative-Ion-Based Neutral Beam Injector. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper FIP/P1-54. [Google Scholar]
- Kobayashi, M.; Tanaka, T.; Nishitani, T.; Ogawa, K.; Isobe, M.; Motojima, G.; Kato, A.; Saze, T.; Yoshihashi, S.; Osakabe, M.; The LHD Experiment Group. Neutron flux distributions in the LHD torus hall evaluated by an imaging plate technique in the first campaign of deuterium plasma experiment. Presented at the 27th IAEA Fusion Energy Conference, Gandhinagar, India, 22–27 October 2018. paper FIP/P3-4. [Google Scholar]
- Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas. Nucl. Fusion 2017, 086046. [Google Scholar] [CrossRef]
- Goto, T.; Suzuki, Y.; Yanagi, N.; Watanabe, K.Y.; Imagawa, S.; Sagara, A. Importance of helical pitch parameter in LHD-type heliotron reactor designs. Nucl. Fusion 2011, 51, 083045. [Google Scholar] [CrossRef]
- Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; et al. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1. Nucl. Fusion 2017, 57, 066011. [Google Scholar] [CrossRef]
- Yokoyama, M.; Seki, R.; Suzuki, C.; Sato, M.; Emoto, M.; Murakami, S.; Osakabe, M.; Tsujimura, T.I.; Yoshimura, Y.; Ido, T.; et al. Extended capability of the integrated transport analysis suite, TASK3D-a, for LHD experiment. Nucl. Fusion 2017, 57, 126016. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, J.; Goto, T.; Tamura, H.; Tanaka, T.; Yanagi, N.; Murase, T.; Sakamoto, R.; Masuzaki, S.; Ohgo, T.; Sagara, A.; et al. Maintainability of the helical reactor FFHR-c1 equipped with the liquid metal divertor and cartridge-type blankets. Fusion Eng. Des. 2018, 136 Pt B, 1278–1285. [Google Scholar] [CrossRef]
- Sudo, S.; Tamura, N. Tracer-encapsulated solid pellet injection system. Rev. Sci. Instrum. 2012, 83, 023503. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S. Temperature dependent EUV spectra of Gd, Tb and Dy ions observed in the Large Helical Device. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 144012. [Google Scholar] [CrossRef]
- Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H.A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; et al. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device. Plasma Phys. Control. Fusion 2017, 59, 014009. [Google Scholar] [CrossRef]
- Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S. Systematic Observation of EUV Spectra from Highly Charged Lanthanide Ions in the Large Helical Device. Atoms 2018, 6, 24. [Google Scholar] [CrossRef]
- Akiyama, T.; Yasuhara, R.; Kawahata, K.; Okajima, S.; Nakayama, K. Dispersion interferometer using modulation amplitudes on LHD. Rev. Sci. Instrum. 2014, 85, 11D301. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Sirinelli, A.; Watts, C.; Shigin, P.; Vayakls, G.; Walsh, M. Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER. Rev. Sci. Instrum. 2016, 87, 11E133. [Google Scholar] [CrossRef] [PubMed]
- Urabe, K.; Akiyama, T.; Terashima, K. Application of phase-modulated dispersion interferometry to electron-density diagnostics of high-pressure plasma. J. Phys. D Appl. Phys. 2014, 47, 262001. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeiri, Y. Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device. Atoms 2018, 6, 69. https://doi.org/10.3390/atoms6040069
Takeiri Y. Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device. Atoms. 2018; 6(4):69. https://doi.org/10.3390/atoms6040069
Chicago/Turabian StyleTakeiri, Yasuhiko. 2018. "Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device" Atoms 6, no. 4: 69. https://doi.org/10.3390/atoms6040069
APA StyleTakeiri, Y. (2018). Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device. Atoms, 6(4), 69. https://doi.org/10.3390/atoms6040069