Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact
Abstract
1. Introduction
2. Theoretical Approach
2.1. The Properties of HCNH+ and Its Isomers
2.1.1. HCNH+ and its Isomer
2.1.2. The H2CN+ Isomer
2.2. Fixed-Geometry Scattering Matrix
2.3. Formulas of the Dissociative Recombination and Vibrational (de-)Excitation Cross Sections
3. Results and Discussions
3.1. Cross Sections
3.2. Rate Coefficients
3.3. Assessment of Uncertainties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziurys, L.M.; Turner, B.E. HCNH+: A New Interstellar Molecular Ion. Astrophys. J. 1986, 302, L31. [Google Scholar] [CrossRef] [PubMed]
- Schilke, P.; Walmsley, C.M.; Millar, T.J.; Henkel, C. Protonated HCN in molecular clouds. Astron. Astrophys. 1991, 247, 487. [Google Scholar]
- Agúndez, M.; Cabezas, C.; Marcelino, N.; Fuentetaja, R.; Tercero, B.; de Vicente, P.; Cernicharo, J. A new protonated molecule discovered in TMC-1: HCCNCH+. Astron. Astrophys. 2022, 659, L9. [Google Scholar] [CrossRef]
- Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core. Mon. Not. R. Astron. Soc. 2017, 470, 3194–3205. [Google Scholar] [CrossRef]
- Fontani, F.; Colzi, L.; Redaelli, E.; Sipilä, O.; Caselli, P. First survey of HCNH+ in high-mass star-forming cloud cores. Astron. Astrophys. 2021, 651, A94. [Google Scholar] [CrossRef]
- Cravens, T.E.; Robertson, I.P.; Waite, J.H., Jr.; Yelle, R.V.; Kasprzak, W.T.; Keller, C.N.; Ledvina, S.A.; Niemann, H.B.; Luhmann, J.G.; McNutt, R.L.; et al. Composition of Titan’s ionosphere. Geophys. Res. Lett. 2006, 33, L07105. [Google Scholar] [CrossRef]
- Vuitton, V.; Yelle, R.; McEwan, M. Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 2007, 191, 722–742. [Google Scholar] [CrossRef]
- d’Ischia, M.; Manini, P.; Moracci, M.; Saladino, R.; Ball, V.; Thissen, H.; Evans, R.A.; Puzzarini, C.; Barone, V. Astrochemistry and Astrobiology: Materials Science in Wonderland? Int. J. Mol. Sci. 2019, 20, 4079. [Google Scholar] [CrossRef]
- Kawai, J.; Kebukawa, Y.; McKay, C.P.; Kobayashi, K. Nucleic acid bases in Titan tholins and possible genetic systems in the Titan liquidosphere. Life Sci. Space Res. 2019, 20, 20–29. [Google Scholar] [CrossRef]
- Watson, W.D. Ion-Molecule Reactions, Molecule Formation, and Hydrogen-Isotope Exchange in Dense Interstellar Clouds. Astrophys. J. 1974, 188, 35–42. [Google Scholar] [CrossRef]
- Ferris, J.P.; Hagan, W.J. HCN and chemical evolution: The possible role of cyano compounds in prebiotic synthesis. Tetrahedron 1984, 40, 1093–1120. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.N.; Minard, R.D. Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss. 2006, 133, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, P.F.; Langer, W.D.; Ellder, J.; Kollberg, E.; Irvine, W. Determination of the HNC to HCN abundance ratio in giant molecular clouds. Astrophys. J. 1981, 249, 524–531. [Google Scholar] [CrossRef]
- Irvine, W.M.; Schloerb, F.P. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1. Astrophys. J. 1984, 282, 516–521. [Google Scholar] [CrossRef]
- Sarrasin, E.; Abdallah, D.B.; Wernli, M.; Faure, A.; Cernicharo, J.; Lique, F. The rotational excitation of HCN and HNC by He: New insights on the HCN/HNC abundance ratio in molecular clouds. Mon. Not. R. Astron. Soc. 2010, 404, 518–526. [Google Scholar] [CrossRef]
- Gong, Y.; Du, F.J.; Henkel, C.; Jacob, A.M.; Belloche, A.; Wang, J.Z.; Menten, K.M.; Yang, W.; Quan, D.H.; Bop, C.T.; et al. Protonated hydrogen cyanide as a tracer of pristine molecular gas. Astron. Astrophys. 2023, 679, A39. [Google Scholar] [CrossRef]
- Bop, C.T.; Agùndez, M.; Cernicharo, J.; Lefloch, B.; Lique, F. HCNH+ abundance in cold dense clouds based on the first hyperfine resolved rate coefficients. A&A 2024, 681, L19. [Google Scholar] [CrossRef]
- Hickman, A.P.; Kashinski, D.O.; Malenda, R.F.; Gatti, F.; Talbi, D. Calculation of dissociating autoionizing states using the block diagonalization method: Application to N2H. J. Phys. Conf. Ser. 2011, 300, 012016. [Google Scholar] [CrossRef]
- Ngassam, V.; Orel, A.E. Resonances in low-energy electron scattering from HCNH+. Phys. Rev. A 2007, 75, 062702. [Google Scholar] [CrossRef]
- Douguet, N.; Fonseca dos Santos, S.; Kokoouline, V.; Orel, A.E. Simplified model to describe the dissociative recombination of linear polyatomic ions of astrophysical interest. EPJ Web Conf. 2015, 84, 07003. [Google Scholar] [CrossRef]
- Seaton, M. Quantum defect theory I. General formulation. Proc. Phys. Soc. 1966, 88, 801. [Google Scholar] [CrossRef]
- Greene, C.H.; Jungen, C. Molecular applications of quantum defect theory. In Advances in Atomic and Molecular Physics; Elsevier: Amsterdam, The Netherlands, 1985; Volume 21, pp. 51–121. [Google Scholar]
- Tennyson, J. Electron–molecule collision calculations using the R-matrix method. Phys. Rep. 2010, 491, 29–76. [Google Scholar] [CrossRef]
- Carr, J.; Galiatsatos, P.; Gorfinkiel, J.; Harvey, A.; Lysaght, M.; Madden, D.; Mašín, Z.; Plummer, M.; Tennyson, J.; Varambhia, H. UKRmol: A low-energy electron- and positron-molecule scattering suite. Euro. Phys. J. D 2012, 66, 58. [Google Scholar] [CrossRef]
- Semaniak, J.; Minaev, B.F.; Derkatch, A.M.; Hellberg, F.; Neau, A.; Rosén, S.; Thomas, R.; Larsson, M.; Danared, H.; Paál, A.; et al. Dissociative Recombination of HCNH+: Absolute Cross-Sections and Branching Ratios. Astrophys. J. Suppl. Ser. 2001, 135, 275. [Google Scholar] [CrossRef]
- Fortenberry, R.C.; Lee, T.J.; Inostroza-Pino, N. The possibility of :CNH2+ within Titan’s atmosphere: Rovibrational analysis of :CNH2+ and :CCH2. Icarus 2019, 321, 260–265. [Google Scholar] [CrossRef]
- Allen, T.L.; Goddard, J.D.; Schaefer, H.F., III. A possible role for triplet H2CN+ isomers in the formation of HCN and HNC in interstellar clouds. J. Chem. Phys. 1980, 73, 3255–3263. [Google Scholar] [CrossRef]
- Fonseca dos Santos, S.; Douguet, N.; Kokoouline, V.; Orel, A. Scattering matrix approach to the dissociative recombination of HCO+ and N2H+. J. Chem. Phys. 2014, 140, 164308. [Google Scholar] [CrossRef]
- Kokoouline, V.; Ayouz, M.; Mezei, J.Z.; Hassouni, K.; Schneider, I.F. Theoretical study of dissociative recombination and vibrational excitation of the ion by an electron impact. Plasma Sources Sci. Technol. 2018, 27, 115007. [Google Scholar] [CrossRef]
- Yuen, C.H.; Ayouz, M.A.; Balucani, N.; Ceccarelli, C.; Schneider, I.F.; Kokoouline, V. Dissociative recombination of CH2NH2+: A crucial link with interstellar methanimine and Titan ammonia. Mon. Not. R. Astron. Soc. 2019, 484, 659–664. [Google Scholar] [CrossRef]
- Ayouz, M.A.; Yuen, C.H.; Balucani, N.; Ceccarelli, C.; Schneider, I.F.; Kokoouline, V. Dissociative electron recombination of NH2CHOH+ and implications for interstellar formamide abundance. Mon. Not. R. Astron. Soc. 2019, 490, 1325–1331. [Google Scholar] [CrossRef]
- Mezei, J.Z.; Ayouz, M.; Orbán, A.; Abdoulanziz, A.; Talbi, D.; Kashinski, D.O.; Bron, E.; Kokoouline, V.; Schneider, I.F. Dissociative recombination of N2H+: A revisited study. Eur. Phys. J. Spec. Top. 2023, 232, 1967–1973. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. WIRES Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar] [CrossRef]
- Johnson, R.J., III. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101; NIST: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Conrad, M.P.; Schaefer, H.F. Role of different isomers of the H2CN+ ion in the formation of interstellar HCN and HNC. Nature 1978, 274, 456–457. [Google Scholar] [CrossRef]
- Sarpal, B.K.; Pfingst, K.; Nestmann, B.M.; Peyerimhoff, S.D. Study of electron scattering by using the polyatomic R-matrix method. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 857. [Google Scholar] [CrossRef]
- Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. Int. J. Quantum Chem. 2015, 115, 258–269. [Google Scholar] [CrossRef]
- Tennyson, J.; Brown, D.B.; Munro, J.J.; Rozum, I.; Varambhia, H.N.; Vinci, N. Quantemol-N: An expert system for performing electron molecule collision calculations using the R-matrix method. J. Phys. Conf. Series 2007, 86, 012001. [Google Scholar] [CrossRef]
- Kokoouline, V.; Greene, C.H. Theoretical study of the H3+ ion dissociative recombination process. J. Phys. Conf. Ser. 2005, 4, 74. [Google Scholar] [CrossRef]
- Ayouz, M.; Faure, A.; Kokoouline, V. Theoretical study of the electron-induced vibrational excitation of H2O. A&A 2024, 687, A3. [Google Scholar] [CrossRef]
Geometry | HCNH+ | |||
---|---|---|---|---|
This Study | Calc. | This Study | Calc. | |
1.0803 | 1.0804 | 1.2514 | 1.2514 | |
1.1403 | 1.1403 | 1.0326 | 1.0327 | |
1.0139 | 1.0140 | 1.0326 | 1.0327 | |
180 | 180 | 120.979 | 120.988 | |
180 | 180 | 120.979 | 120.988 | |
0 | 0 | 118.041 | 118.024 | |
Total energy | −93.557075 | −93.557076 | −93.475788 | −93.475788 |
HCNH+ | ||||
---|---|---|---|---|
Normal Mode, | Symmetry | Normal Coordinate, | Frequency, | |
This Study | Exp. [34] | |||
NH stretch, | 3645.07 | 3482.8 | ||
CH stretch, | 3316.36 | 3187.9 | ||
CN stretch, | 2179.51 | 2155.7 | ||
HCN bend, | 805.33 | 801.6 | ||
HNC bend, | 647.86 | 645.9 | ||
Normal Mode, | Symmetry | Normal Coordinate, | Frequency, | |
This Study | Calc. [34] | |||
A1 | 3317 | 3318 | ||
A1 | 1723 | 1724 | ||
A1 | 1394 | 1394 | ||
B1 | 723 | 725 | ||
B2 | 3405 | 3405 | ||
B2 | 630 | 627 |
Mode, | Symmetry | Normal Coordinate, | Frequency, | |
---|---|---|---|---|
This Study | Calc. [34] | |||
A1 | 2862 | 2859 | ||
A1 | 1843 | 1843 | ||
A1 | 1034 | 1025 | ||
B1 | 810 | 804 | ||
B2 | 2897 | 2892 | ||
B2 | ı437 | ı456 | ||
Geometry | This Study | Calc. [34] | ||
1.2089 | 1.2089 | |||
1.1169 | 1.1168 | |||
1.1169 | 1.1168 | |||
119.950 | 119.927 | |||
119.950 | 119.927 | |||
120.099 | 120.145 |
Normal Mode, | HCNH+ | |||
---|---|---|---|---|
Electronic States | Electronic States | |||
1 | 0.4598 | 0.2345 | ||
2 | 0.4793 | 0.2149 | ||
3 | 0.3446 | 0.2963 | ||
4 | 0.3392 | 0.2308 | ||
5 | 0.2206 | 0.3322 | ||
6 | - | - | 0.1672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayouz, M.A.; Buch, A. Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact. Atoms 2024, 12, 64. https://doi.org/10.3390/atoms12120064
Ayouz MA, Buch A. Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact. Atoms. 2024; 12(12):64. https://doi.org/10.3390/atoms12120064
Chicago/Turabian StyleAyouz, Mehdi Adrien, and Arnaud Buch. 2024. "Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact" Atoms 12, no. 12: 64. https://doi.org/10.3390/atoms12120064
APA StyleAyouz, M. A., & Buch, A. (2024). Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact. Atoms, 12(12), 64. https://doi.org/10.3390/atoms12120064