A Critical Look at Density Functional Theory in Chemistry: Untangling Its Strengths and Weaknesses
Abstract
1. Introduction
2. Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haunschild, R.; Barth, A.; Marx, W. Evolution of DFT Studies in View of a Scientometric Perspective. J. Cheminform. 2016, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.K. Black-Box-Chemistry. Available online: https://cen.acs.org/articles/89/i33/Black-Box-Chemistry.html (accessed on 12 April 2024).
- Grimme, S.; Schreiner, P.R. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew. Chem. Int. Ed. 2018, 57, 4170–4176. [Google Scholar] [CrossRef] [PubMed]
- Bryenton, K.R.; Adeleke, A.A.; Dale, S.G.; Johnson, E.R. Delocalization Error: The Greatest Outstanding Challenge in Density-Functional Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023, 13, e1631. [Google Scholar] [CrossRef]
- McCarty, R.J.; Perchak, D.; Pederson, R.; Evans, R.; Qiu, Y.; White, S.R.; Burke, K. Bypassing the Energy Functional in Density Functional Theory: Direct Calculation of Electronic Energies from Conditional Probability Densities. Phys. Rev. Lett. 2020, 125, 266401. [Google Scholar] [CrossRef]
- Lee, S.J.R.; Welborn, M.; Manby, F.R.; Miller, T.F. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368. [Google Scholar] [CrossRef]
- Cernatic, F.; Senjean, B.; Robert, V.; Fromager, E. Ensemble Density Functional Theory of Neutral and Charged Excitations: Exact Formulations, Standard Approximations, and Open Questions; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 380, ISBN 0123456789. [Google Scholar]
- Pederson, R.; Kalita, B.; Burke, K. Machine Learning and Density Functional Theory. Nat. Rev. Phys. 2022, 4, 357–358. [Google Scholar] [CrossRef]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density Functional Theory Is Straying from the Path toward the Exact Functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Korth, M. Density Functional Theory: Not Quite the Right Answer for the Right Reason Yet. Angew. Chem. Int. Ed. 2017, 56, 5396–5398. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA; Clarendon Press: Oxford, UK, 1989; 333p. [Google Scholar]
- Grimme, S. Density Functional Theory with London Dispersion Corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Klimeš, J.; Michaelides, A. Perspective: Advances and Challenges in Treating van Der Waals Dispersion Forces in Density Functional Theory. J. Chem. Phys. 2012, 137, 120901. [Google Scholar] [CrossRef]
- Corminboeuf, C. Minimizing Density Functional Failures for Non-Covalent Interactions beyond van Der Waals Complexes. Acc. Chem. Res. 2014, 47, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Mackie, I.D.; Dilabio, G.A. Dispersion Interactions in Density-Functional Theory. J. Phys. Org. Chem. 2009, 22, 1127–1135. [Google Scholar] [CrossRef]
- Kaplan, I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1–367. [Google Scholar] [CrossRef]
- Boeyens, J.C.A. Intermolecular Bonding. In Intermolecular Interactions; Springer: Boston, MA, USA, 1998; pp. 3–7. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 1–674. [Google Scholar] [CrossRef]
- Couronne, O.; Ellinger, Y. An Ab Initio and DFT Study of (N2)2 Dimers. Chem. Phys. Lett. 1999, 306, 71–77. [Google Scholar] [CrossRef]
- Sponer, J.; Leszczynski, J.; Hobza’, P.; Heyrovskg, J. Base Stacking in Cytosine Dimer. A Comparison of Correlated Ab Initio Calculations with Three Empirical Potential Models and Density Functional Theory Calculations. J. Comput. Chem. 1996, 17, 841–850. [Google Scholar] [CrossRef]
- Kurita, N.; Sekino, H. Ab Initio and DFT Studies for Accurate Description of van Der Waals Interaction between He Atoms. Chem. Phys. Lett. 2001, 348, 139–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Yang, W. Describing van Der Waals Interaction in Diatomic Molecules with Generalized Gradient Approximations: The Role of the Exchange Functional. J. Chem. Phys. 1997, 107, 7921–7925. [Google Scholar] [CrossRef]
- Pérez-Jordá, J.M.; Becke, A.D. A Density-Functional Study of van Der Waals Forces: Rare Gas Diatomics. Chem. Phys. Lett. 1995, 233, 134–137. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.; Sim, E. Understanding DFT Calculations of Weak Interactions: Density-Corrected Density Functional Theory. J. Korean Chem. Soc. 2019, 63, 24–28. [Google Scholar] [CrossRef]
- Mori-Sánchez, P.; Cohen, A.J.; Yang, W. Localization and Delocalization Errors in Density Functional Theory and Implications for Band-Gap Prediction. Phys. Rev. Lett. 2008, 100, 146401. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Fractional Charge Perspective on the Band Gap in Density-Functional Theory. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 115123. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, N.; Pagliai, M.; Sinha, S.; Barone, V.; Alfè, D.; Brancato, G. Enhancing the Accuracy of Ab Initio Molecular Dynamics by Fine Tuning of Effective Two-Body Interactions: Acetonitrile as a Test Case. J. Phys. Chem. A 2021, 125, 10475–10484. [Google Scholar] [CrossRef]
- Ye, S.; Neese, F. Accurate Modeling of Spin-State Energetics in Spin-Crossover Systems with Modern Density Functional Theory. Inorg. Chem. 2010, 49, 772–774. [Google Scholar] [CrossRef]
- Reiher, M.; Salomon, O.; Hess, B.A. Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc. 2001, 107, 48–55. [Google Scholar] [CrossRef]
- Reiher, M. Theoretical Study of the Fe(Phen)2(NCS)2 Spin-Crossover Complex with Reparametrized Density Functionals. Inorg. Chem. 2002, 41, 6928–6935. [Google Scholar] [CrossRef]
- Ghosh, A.; Taylor, P.R. High-Level Ab Initio Calculations on the Energetics of Low-Lying Spin States of Biologically Relevant Transition Metal Complexes: A First Progress Report. Curr. Opin. Chem. Biol. 2003, 7, 113–124. [Google Scholar] [CrossRef]
- Berlin Heidelberg, S.-V.; Harvey, J.N. DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. Struct. Bond. 2004, 112, 151–184. [Google Scholar] [CrossRef]
- Herrmann, C.; Yu, L.; Reiher, M. Spin States in Polynuclear Clusters: The [Fe2O2] Core of the Methane Monooxygenase Active Site. J. Comput. Chem. 2006, 27, 1223–1239. [Google Scholar] [CrossRef]
- Swart, M. Accurate Spin-State Energies for Iron Complexes. J. Chem. Theory Comput. 2008, 4, 2057–2066. [Google Scholar] [CrossRef]
- Swart, M. Spin States of (Bio)Inorganic Systems: Successes and Pitfalls. Int. J. Quantum Chem. 2013, 113, 2–7. [Google Scholar] [CrossRef]
- Radoń, M.; Broclawik, E.; Pierloot, K. Electronic Structure of Selected {FeNO}7 Complexes in Heme and Non-Heme Architectures: A Density Functional and Multireference Ab Initio Study. J. Phys. Chem. B 2010, 114, 1518–1528. [Google Scholar] [CrossRef]
- Boguslawski, K.; Marti, K.H.; Legeza, Ö.; Reiher, M. Accurate Ab Initio Spin Densities. J. Chem. Theory Comput. 2012, 8, 1970–1982. [Google Scholar] [CrossRef]
- Conradie, J.; Ghosh, A. DFT Calculations on the Spin-Crossover Complex Fe(Salen)(NO): A Quest for the Best Functional. J. Phys. Chem. B 2007, 111, 12621–12624. [Google Scholar] [CrossRef] [PubMed]
- Zunger, A. Bridging the Gap between Density Functional Theory and Quantum Materials. Nat. Comput. Sci. 2022, 2, 529–532. [Google Scholar] [CrossRef]
- Donnan, P.H.; Mansoorabadi, S.O. Broken-Symmetry Density Functional Theory Analysis of the ω Intermediate in Radical S-Adenosyl-l-Methionine Enzymes: Evidence for a Near-Attack Conformer over an Organometallic Species. J. Am. Chem. Soc. 2022, 144, 3381–3385. [Google Scholar] [CrossRef] [PubMed]
- Mouesca, J.M. Density Functional Theory–Broken Symmetry (DFT–BS) Methodology Applied to Electronic and Magnetic Properties of Bioinorganic Prosthetic Groups. In Metalloproteins Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; pp. 269–296. ISBN 978-1-62703-794-5. [Google Scholar]
- Tzeli, D.; Golub, P.; Brabec, J.; Matoušek, M.; Pernal, K.; Veis, L.; Raugei, S.; Xantheas, S.S. Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2−,3−,4−, [Fe2S2(SCys)4]2−, [Fe2S2(S-p-Tol)4]2−, and [Fe2S2(S-o-Xyl)4]2− Complexes. J. Chem. Theory Comput. 2024, 20, 10406–10423. [Google Scholar] [CrossRef]
- Choi, C.H.; Kertesz, M.; Karpfen, A. Limitations of Current Density Functional Theories for the Description of Partial π-Bond Breaking. Chem. Phys. Lett. 1997, 276, 266–268. [Google Scholar] [CrossRef]
- Karpfen, A.; Choi, C.H.; Kertesz, M. Single-Bond Torsional Potentials in Conjugated Systems: A Comparison of Ab Initio and Density Functional Results. J. Phys. Chem. A 1997, 101, 7426–7433. [Google Scholar] [CrossRef]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19, 32184–32215. [Google Scholar] [CrossRef]
- Nam, S.; Cho, E.; Sim, E.; Burke, K. Explaining and Fixing DFT Failures for Torsional Barriers. J. Phys. Chem. Lett. 2021, 12, 2796–2804. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Insights into Current Limitations of Density Functional Theory. Science 2008, 321, 792–794. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Scuseria, G.E. Effect of the Perdew–Zunger Self-Interaction Correction on the Thermochemical Performance of Approximate Density Functionals. J. Chem. Phys. 2004, 121, 8187–8193. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Assessment of Density Functionals for π Systems: Energy Differences between Cumulenes and Poly-Ynes; Proton Affinities, Bond Length Alternation, and Torsional Potentials of Conjugated Polyenes; and Proton Affinities of Conjugated Shiff Bases. J. Phys. Chem. A 2006, 110, 10478–10486. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.N. On the Accuracy of Density Functional Theory in Transition Metal Chemistry. Annu. Rep. Sect. C 2006, 102, 203–226. [Google Scholar] [CrossRef]
- Su, G.; Yang, S.; Jiang, Y.; Li, J.; Li, S.; Ren, J.C.; Liu, W. Modeling Chemical Reactions on Surfaces: The Roles of Chemical Bonding and van Der Waals Interactions. Prog. Surf. Sci. 2019, 94, 100561. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, D.; Wang, Y.; Li, S.; Liu, J.; Zhu, Y.; Tang, M. DFT Study on the Reaction Mechanisms and Stereoselectivities of NHC-Catalyzed [2 + 2] Cycloaddition between Arylalkylketenes and Electron-Deficient Benzaldehydes. Org. Biomol. Chem. 2014, 12, 6374–6383. [Google Scholar] [CrossRef]
- Klimovich, P.V.; Shirts, M.R.; Mobley, D.L. Guidelines for the Analysis of Free Energy Calculations. J. Comput. Aided Mol. Des. 2015, 29, 397–411. [Google Scholar] [CrossRef]
- González, L.; Lindh, R. Quantum Chemistry and Dynamics of Excited States: Methods and Applications; Wiley: Hoboken, NJ, USA, 2020; ISBN 9781119417774. [Google Scholar]
- Serrano-Andrés, L.; Serrano-Pérez, J.J. Calculation of Excited States: Molecular Photophysics and Photochemistry on Display. In Handbook of Computational Chemistry; Springer Science & Business Media: New York, NY, USA, 2017; pp. 639–725. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, K. Origin of the Failure of Density Functional Theories in Predicting Inverted Singlet-Triplet Gaps. J. Phys. Chem. A 2022, 126, 1378–1385. [Google Scholar] [CrossRef]
- Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.; Christiansen, O.; Jensen, H.J.A.; Kongsted, J. Failures of TDDFT in Describing the Lowest Intramolecular Charge-Transfer Excitation in Para-Nitroaniline. Mol. Phys. 2013, 111, 1235–1248. [Google Scholar] [CrossRef]
- Zyubin, A.S.; Mebel, A.M. Performance of Time-Dependent Density Functional and Green Functions Methods for Calculations of Excitation Energies in Radicals and for Rydberg Electronic States. J. Comput. Chem. 2003, 24, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Dreuw, A.; Weisman, J.L.; Head-Gordon, M. Long-Range Charge-Transfer Excited States in Time-Dependent Density Functional Theory Require Non-Local Exchange. J. Chem. Phys. 2003, 119, 2943–2946. [Google Scholar] [CrossRef]
- Ryu, H.; Park, J.; Kim, H.K.; Park, J.Y.; Kim, S.T.; Baik, M.H. Pitfalls in Computational Modeling of Chemical Reactions and How to Avoid Them. Organometallics 2018, 37, 3228–3239. [Google Scholar] [CrossRef]
- Escudero, D.; Laurent, A.D.; Jacquemin, D. Time-Dependent Density Functional Theory: A Tool to Explore Excited States. In Handbook of Computational Chemistry; Springer Science & Business Media: New York, NY, USA, 2017; pp. 927–961. [Google Scholar] [CrossRef]
- Grimme, S. Calculation of the Electronic Spectra of Large Molecules. Rev. Comput. Chem. 2004, 20, 153–218. [Google Scholar] [CrossRef]
- Liao, M.S.; Lu, Y.; Scheiner, S. Performance Assessment of Density-Functional Methods for Study of Charge-Transfer Complexes. J. Comput. Chem. 2003, 24, 623–631. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Peach, M.J.G.; Williamson, M.J.; Tozer, D.J. Influence of Triplet Instabilities in TDDFT. J. Chem. Theory Comput. 2011, 7, 3578–3585. [Google Scholar] [CrossRef]
- Wiggins, P.; Williams, J.A.; Tozer, D.J. Excited State Surfaces in Density Functional Theory: A New Twist on an Old Problem. J. Chem. Phys. 2009, 131, 91101. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. [Google Scholar] [CrossRef]
- Tzeli, D. Quadruple Chemical Bonding in the Diatomic Anions TcN−, RuC−, RhB−, and PdBe−. J. Comput. Chem. 2021, 42, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, C.; Tzeliou, C.E.; Androutsopoulos, A.; Tzeli, D.D. Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules 2023, 28, 8016. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Atkins, A.J.; Plasser, F.; González, L. The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. the Case of Thioformaldehyde. J. Chem. Theory Comput. 2019, 15, 3470–3480. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.L.; Gagliardi, L.; Truhlar, D.G. Self-Interaction Error in Density Functional Theory: An Appraisal. J. Phys. Chem. Lett. 2018, 9, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhao, P. Relativistic Density-Functional Theories. In Handbook of Nuclear Physics; Springer Nature: Singapore, 2023; pp. 211–2142. ISBN 978-981-19-6345-2. [Google Scholar]
- Gagliardi, L.; Truhlar, D.G.; Manni, G.L.; Carlson, R.K.; Hoyer, C.E.; Bao, J.L. Multiconfiguration Pair-Density Functional Theory: A New Way to Treat Strongly Correlated Systems. Acc. Chem. Res. 2017, 50, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, C.E.; Ghosh, S.; Truhlar, D.G.; Gagliardi, L. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation. J. Phys. Chem. Lett. 2016, 7, 586–591. [Google Scholar] [CrossRef]
- Ren, H.; Provorse, M.R.; Bao, P.; Qu, Z.; Gao, J. Multistate Density Functional Theory for Effective Diabatic Electronic Coupling. J. Phys. Chem. Lett. 2016, 7, 2286–2293. [Google Scholar] [CrossRef]
- Gao, J.; Grofe, A.; Ren, H.; Bao, P. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 5143–5149. [Google Scholar] [CrossRef]
- Nguyen, T.; Sutton, A.D.; Brynda, M.; Fettinger, J.C.; Long, G.J.; Power, P.P. Synthesis of a Stable Compound with Fivefold Bonding between Two Chromium(i) Centers. Science 2005, 310, 844–847. [Google Scholar] [CrossRef]
- Keilwerth, M.; Mao, W.; Malischewski, M.; Jannuzzi, S.A.V.; Breitwieser, K.; Heinemann, F.W.; Scheurer, A.; DeBeer, S.; Munz, D.; Bill, E.; et al. The Synthesis and Characterization of an Iron(VII) Nitrido Complex. Nat. Chem. 2024, 16, 514–520. [Google Scholar] [CrossRef]
- Fan, R.; Serrano-Plana, J.; Oloo, W.N.; Draksharapu, A.; Delgado-Pinar, E.; Company, A.; Martin-Diaconescu, V.; Borrell, M.; Lloret-Fillol, J.; García-España, E.; et al. Spectroscopic and DFT Characterization of a Highly Reactive Nonheme FeV-Oxo Intermediate. J. Am. Chem. Soc. 2018, 140, 3916–3928. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Prediction of Molecular Properties and Molecular Spectroscopy with Density Functional Theory: From Fundamental Theory to Exchange-Coupling. Coord. Chem. Rev. 2009, 253, 526–563. [Google Scholar] [CrossRef]
- Grimme, S.; Waletzke, M. A Combination of Kohn–Sham Density Functional Theory and Multi-Reference Configuration Interaction Methods. J. Chem. Phys. 1999, 111, 5645–5655. [Google Scholar] [CrossRef]
- Marian, C.M.; Heil, A.; Kleinschmidt, M. The DFT/MRCI Method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1394. [Google Scholar] [CrossRef]
- Marian, C.M.; Gilka, N. Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended π-Systems. J. Chem. Theory Comput. 2008, 4, 1501–1515. [Google Scholar] [CrossRef]
- Lüdtke, N.; Kuhnt, J.; Heil, T.; Steffen, A.; Marian, C.M. Revisiting Ligand-to-Ligand Charge Transfer Phosphorescence Emission from Zinc(II) Diimine Bis-Thiolate Complexes: It Is Actually Thermally Activated Delayed Fluorescence. ChemPhotoChem 2023, 7, e202200142. [Google Scholar] [CrossRef]
- Losada, I.B.; Persson, P. Photoredox Matching of Earth-Abundant Photosensitizers with Hydrogen Evolving Catalysts by First-Principles Predictions. J. Chem. Phys. 2024, 160, 074302. [Google Scholar] [CrossRef]
- Kjær, K.S.; Kaul, N.; Prakash, O.; Chábera, P.; Rosemann, N.W.; Honarfar, A.; Gordivska, O.; Fredin, L.A.; Bergquist, K.E.; Häggström, L.; et al. Luminescence and Reactivity of a Charge-Transfer Excited Iron Complex with Nanosecond Lifetime. Science 2019, 363, 249–253. [Google Scholar] [CrossRef]
- Chan, A.Y.; Ghosh, A.; Yarranton, J.T.; Twilton, J.; Jin, J.; Arias-Rotondo, D.M.; Sakai, H.A.; McCusker, J.K.; MacMillan, D.W.C. Exploiting the Marcus Inverted Region for First-Row Transition Metal-Based Photoredox Catalysis. Science 2023, 382, 191–197. [Google Scholar] [CrossRef]
- Förster, C.; Heinze, K. The Photophysics and Applications of Molecular Rubies. Adv. Inorg. Chem. 2024, 83, 111–159. [Google Scholar] [CrossRef]
- Tzeliou, C.E.; Tzeli, D. Metallocene-Naphthalimide Derivatives: The Effect of Geometry, DFT Methodology, and Transition Metals on Absorption Spectra. Molecules 2023, 28, 3565. [Google Scholar] [CrossRef] [PubMed]
- Avramopoulos, A.; Reis, H.; Tzeli, D.; Zaleśny, R.; Papadopoulos, M.G. Photoswitchable Molecular Units with Tunable Nonlinear Optical Activity: A Theoretical Investigation. Molecules 2023, 28, 5646. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.J.; Truhlar, D.G. Density Functional Theory for Transition Metals and Transition Metal Chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. [Google Scholar] [CrossRef]
- Ziegler, T.; Autschbach, J. Theoretical Methods of Potential Use for Studies of Inorganic Reaction Mechanisms. Chem. Rev. 2005, 105, 2695–2722. [Google Scholar] [CrossRef] [PubMed]
- Faber, F.A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S.S.; Dahl, G.E.; Vinyals, O.; Kearnes, S.; Riley, P.F.; Anatole Von Lilienfeld, O. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. J. Chem. Theory Comput. 2017, 13, 5255–5264. [Google Scholar] [CrossRef]
- Snyder, J.C.; Rupp, M.; Hansen, K.; Müller, K.R.; Burke, K. Finding Density Functionals with Machine Learning. Phys. Rev. Lett. 2012, 108, 253002. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.M.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to Machine Learning: Recent Approaches to Materials Science—A Review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Ye, Z.-R.; Hung, S.-H.; Chen, B.; Tsai, M.-K. Assessment of Predicting Frontier Orbital Energies for Small Organic Molecules Using Knowledge-Based and Structural Information. ACS Eng. Au 2022, 2, 360–368. [Google Scholar] [CrossRef]
- Blum, L.C.; Reymond, J.-L. 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13. J. Am. Chem. Soc. 2009, 13, 8732–8733. [Google Scholar] [CrossRef]
- del Rio, B.G.; Phan, B.; Ramprasad, R. A Deep Learning Framework to Emulate Density Functional Theory. NPJ Comput. Mater. 2023, 9, 158. [Google Scholar] [CrossRef]
- Zois, K.P. Upgrading to Chemist v2.0|Opinion|Chemistry World. Available online: https://www.chemistryworld.com/opinion/upgrading-to-chemist-v20/4017738.article (accessed on 12 April 2024).


| Chemical System | Electronic Structure Method | Ref. | |
|---|---|---|---|
| DFT and Issues | Appropriate Methodology | ||
| H2+, H2 | Geometry Potential Energy Curves Delocalisation error exists Static Correlation error exists | MR methods | [49] |
| RuC- | Assignment of the ground state (Λ value) | MRCISD | [71] |
| RuB, NbB, LaB, OsB | Assignment of the ground state (Λ value) | MRCISD | [72] |
| S=CH2 | Geometry and Vertical Energies Potential Energy Surfaces Population Dynamics | MRCISD and MS-CASPT2 | [73] |
| Heptazine, Cyclazine and Related Compounds | S-T gap (an inverted S-T gap is predicted) | MRPT2, MCSSCF, STEOM-CCSD, CIS(D) (MC-PDFT with a proper choice of double hydride functional) | [59] |
| [Fe2S2(SMe)4]2−,3−,4− | LS State Geometry: DFT, BS-DFT HS State Geometry: DFT, BS-DFT Energetics: DFT, BS-DFT | MRCISD, NEVPT2, AC0 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zois, K.P.; Tzeli, D. A Critical Look at Density Functional Theory in Chemistry: Untangling Its Strengths and Weaknesses. Atoms 2024, 12, 65. https://doi.org/10.3390/atoms12120065
Zois KP, Tzeli D. A Critical Look at Density Functional Theory in Chemistry: Untangling Its Strengths and Weaknesses. Atoms. 2024; 12(12):65. https://doi.org/10.3390/atoms12120065
Chicago/Turabian StyleZois, Konstantinos P., and Demeter Tzeli. 2024. "A Critical Look at Density Functional Theory in Chemistry: Untangling Its Strengths and Weaknesses" Atoms 12, no. 12: 65. https://doi.org/10.3390/atoms12120065
APA StyleZois, K. P., & Tzeli, D. (2024). A Critical Look at Density Functional Theory in Chemistry: Untangling Its Strengths and Weaknesses. Atoms, 12(12), 65. https://doi.org/10.3390/atoms12120065

