Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = molecular cation reactive collisions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1489 KB  
Article
Theoretical Study of the Dissociative Recombination and Vibrational (De-)Excitation of HCNH+ and Its Isomers by Electron Impact
by Mehdi Adrien Ayouz and Arnaud Buch
Atoms 2024, 12(12), 64; https://doi.org/10.3390/atoms12120064 - 3 Dec 2024
Cited by 1 | Viewed by 1240
Abstract
Protonated hydrogen cyanide, HCNH+, is one of the most important molecules of interest in the astrophysical and astrochemical fields. This molecule not only plays the role of a reaction intermediary in various types of interstellar reactions but was also identified in [...] Read more.
Protonated hydrogen cyanide, HCNH+, is one of the most important molecules of interest in the astrophysical and astrochemical fields. This molecule not only plays the role of a reaction intermediary in various types of interstellar reactions but was also identified in Titan’s upper atmosphere. The cross sections for the dissociative recombination (DR) and vibrational (de-)excitation (VE and VDE) of HCNH+ and its CNH2+ isomer are computed using a theoretical approach based on a combination of the normal mode approximation for the vibrational states of the target ions and the UK R-matrix code to evaluate electron-ion scattering matrices for fixed geometries of ions. The theoretical convoluted DR cross section for HCNH+ agrees well with the experimental data and a previous study. It was also found that the DR of the CNH2+ isomer is important, which suggests that this ion might be present in DR experiments of HCNH+. Moreover, the ab initio calculations performed on the H2CN+ isomer predict that this ion is a transition state. This result was confirmed by the study of the reaction path of the HCNH+ isomerization that was carried out by evaluating the intrinsic reaction coordinate (IRC). Finally, thermally averaged rate coefficients derived from the cross sections are provided for temperatures in the 10–10,000 K range. A comprehensive set of calculations is performed to assess the uncertainty of the obtained data. These results should help in modeling non-LTE spectra of HCNH+, taking into account the role of its most stable isomer, in various astrophysical environments. Full article
Show Figures

Figure 1

14 pages, 5035 KB  
Article
Total Electron Detachment and Induced Cationic Fragmentation Cross Sections for Superoxide Anion (O2) Collisions with Benzene (C6H6) Molecules
by Carlos Guerra, Sarvesh Kumar, Fernando Aguilar-Galindo, Sergio Díaz-Tendero, Ana I. Lozano, Mónica Mendes, Juan C. Oller, Paulo Limão-Vieira and Gustavo García
Int. J. Mol. Sci. 2022, 23(3), 1266; https://doi.org/10.3390/ijms23031266 - 23 Jan 2022
Cited by 3 | Viewed by 3200
Abstract
In this study, novel experimental total electron detachment cross sections for O2 collisions with benzene molecules are reported for the impact energy range (10–1000 eV), as measured with a transmission beam apparatus. By analysing the positively charged species produced during the [...] Read more.
In this study, novel experimental total electron detachment cross sections for O2 collisions with benzene molecules are reported for the impact energy range (10–1000 eV), as measured with a transmission beam apparatus. By analysing the positively charged species produced during the collision events, relative total ionisation cross sections were derived in the incident energy range of 160–900 eV. Relative partial ionisation cross sections for fragments with m/z ≤ 78 u were also given in this energy range. We also confirmed that heavier compounds (m/z > 78 u) formed for impact energies between 550 and 800 eV. In order to further our knowledge about the collision dynamics governing the fragmentation of such heavier molecular compounds, we performed molecular dynamics calculations within the framework of the Density Functional Theory (DFT). These results demonstrated that the fragmentation of these heavier compounds strongly supports the experimental evidence of m/z = 39–42, 50, 60 (u) cations formation, which contributed to the broad local maximum in the total ionisation observed from 550 to 800 eV. This work reveals the reactivity induced by molecular anions colliding with hydrocarbons at high energies, processes that can take place in the interstellar medium under various local conditions. Full article
(This article belongs to the Special Issue Electron and Photon Interactions with Bio(Related) Molecules)
Show Figures

Figure 1

Back to TopTop