Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact
Abstract
:1. Introduction
2. Methodology
The BEB and Modified-BEB Models
3. Computational Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEB | Binary-Encounter-Bethe |
m-BEB | modified Binary-Encounter-Bethe |
SI | Singly Ionized |
DI | Doubly Ionized |
EIMS | Electron Ionization Mass Spectrometry |
HF | Hartree-Fock |
CC | Close Coupling |
TICS | Total Ionization Cross Sections |
PICS | Partial Ionization Cross Sections |
eV | electron volt |
AE | Appearance Energy |
BR | Branching Ratios |
Da | Dalton |
TOF | Time-of-Flight |
References
- Watson, J.T.; Sparkman, O.D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley-Interscience; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Inagaki, N. Plasma Surface Modification and Plasma Polymerization, 1st ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Economou, D.J. Hybrid simulation of low temperature plasmas: A brief tutorial. Plasma Process Polym. 2017, 14, 1600152. [Google Scholar] [CrossRef]
- Prager, J.; Riedel, U.; Warnatz, J. Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames. Proc. Combust. Inst. 2007, 31, 1129–1137. [Google Scholar] [CrossRef]
- Chen, B.; Wang, H.; Wang, Z.; Han, J.; Alquaity, A.B.; Wang, H.; Hansen, N.; Sarathy, S.M. Ion chemistry in premixed rich methane flames. Combust. Flame 2019, 202, 208–218. [Google Scholar] [CrossRef]
- Donnelly, V.M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. Vacuum Surf. Film. 2013, 31, 050825. [Google Scholar] [CrossRef]
- Carbone, E.; Graef, W.; Hagelaar, G.; Boer, D.; Hopkins, M.M.; Stephens, J.C.; Yee, B.T.; Pancheshnyi, S.; van Dijk, J.; Pitchford, L. Data needs for modeling low-temperature non-equilibrium plasmas: The LXCat project, history, perspectives and a tutorial. Atoms 2021, 9, 16. [Google Scholar] [CrossRef]
- Mohr, S.; Tudorovskaya, M.; Hanicinec, M.; Tennyson, J. Targeted Cross-Section Calculations for Plasma Simulations. Atoms 2021, 9, 85. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722. [Google Scholar] [CrossRef]
- Zammit, M.C.; Fursa, D.V.; Savage, J.S.; Bray, I. Electron– and positron–molecule scattering: Development of the molecular convergent close-coupling method. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 123001. [Google Scholar] [CrossRef]
- Kim, Y.K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3954. [Google Scholar] [CrossRef] [PubMed]
- Luthra, M.; Goswami, K.; Arora, A.K.; Bharadvaja, A.; Baluja, K.L. Mass Spectrometry-Based Approach to Compute Electron-Impact Partial Ionization Cross-Sections of Methane, Water and Nitromethane from Threshold to 5 keV. Atoms 2022, 10, 74. [Google Scholar] [CrossRef]
- Bharadvaja, A.; Bassi, M.; Arora, A.K.; Baluja, K.L. Electron interactions with tetramethylsilane from the ionization threshold up to 5000 eV. Plasma Sources Sci. Technol. 2021, 30, 095012. [Google Scholar] [CrossRef]
- Arora, A.K.; Gupta, K.K.; Goswami, K.; Bharadvaja, A.; Baluja, K.L. A binary-encounter-Bethe approach to compute electron-impact partial ionization cross sections of plasma relevant molecules such as hexamethyldisiloxane and silane. Plasma Sources Sci. Technol. 2022, 31, 015008. [Google Scholar] [CrossRef]
- Goswami, K.; Luthra, M.; Bharadvaja, A.; Arora, A.K.; Baluja, K.L. Electron impact partial ionization cross sections of 1-butanol. Eur. Phys. D 2022, 76, 97. [Google Scholar] [CrossRef]
- Goswami, K.; Luthra, M.; Arora, A.K.; Bharadvaja, A.; Baluja, K.L. Electron-impact cross sections of acetylene up to 5 keV. Eur. Phys. J. D 2022, 76, 94. [Google Scholar] [CrossRef]
- Goswami, K.; Arora, A.K.; Bharadvaja, A.; Baluja, K.L. Electron impact partial ionization cross sections of methyl alcohol up to 5 keV using the mass spectrometry data. Eur. Phys. D 2021, 75, 1–8. [Google Scholar] [CrossRef]
- Graves, V.; Cooper, B.; Tennyson, J. Calculated electron impact ionisation fragmentation patterns. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 235203. [Google Scholar] [CrossRef]
- Hamilton, J.R.; Tennyson, J.; Huang, S.; Kushner, M.J. Calculated cross sections for electron collisions with NF3, NF2 and NF with applications to remote plasma sources. Plasma Sources Sci. Technol. 2017, 26, 065010. [Google Scholar] [CrossRef]
- Basner, R.; Schmidt, M.; Becker, K. Measurements of absolute total and partial cross sections for the electron ionization of tungsten hexafluoride (WF6). Int. J. Mass Spectrom. 2004, 233, 25–31. [Google Scholar] [CrossRef]
- Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Gupta, A.; Ifeacho, P.; Schulz, C.; Wiggers, H. Synthesis of tailored WO3 and WOx (2.9 < x < 3) nanoparticles by adjusting the combustion conditions in a H2/O2/Ar premixed flame reactor. Proc. Combust. Inst. 2011, 33, 1883–1890. [Google Scholar] [CrossRef]
- Matsui, S.; Mori, K. New selective deposition technology by electron–beam induced surface reaction. J. Vac. Sci. 1986, 4, 299–304. [Google Scholar] [CrossRef]
- Kirss, R.U.; Lamartine, M. Chemical vapor deposition of tungsten oxide. Appl. Organomet. Chem. 1998, 12, 155–160. [Google Scholar] [CrossRef]
- Dushik, V.V.; Rozhanskii, N.V.; Zalavutdinov, R.K. IR Study of the Transformation of WF6 on a W Substrate. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2019, 13, 919–924. [Google Scholar] [CrossRef]
- Hulkko, J.G.; Boo, K.; Qiu, R.; Backe, O.; Boman, M.; Halvarsson, M.; Lindahl, E. Kinetics of the low-pressure chemical vapor deposited tungsten nitride process using tungsten hexafluoride and ammonia precursors. J. Vac. Sci. Technol. A 2021, 39, 063403. [Google Scholar] [CrossRef]
- Groven, B.; Heyne, M.; Mehta, A.N.; Bender, H.; Nuytten, T.; Meersschaut, J.; Conard, T.; Verdonck, P.; Van Elshocht, S.; Vandervorst, W.; et al. Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS2 from WF6, H2 Plasma, and H2S. Chem. Mater. 2017, 29, 2927. [Google Scholar] [CrossRef]
- Delabie, A.; Caymax, M.; Groven, B.; Heyne, M.; Haesevoets, K.; Meersschaut, J.; Nuytten, T.; Bender, H.; Conard, T.; Verdonck, P.; et al. Low Temperature Deposition of 2D WS2 Layers WF6, H2S Precursors: Impact of Reducing Agents. Chem. Commun. 2015, 51, 15692–15695. [Google Scholar] [CrossRef]
- Huo, W.M.; Kim, Y.-K. Use of relativistic effective core potentials in the calculation of total electron-impact ionization cross-sections. Chem. Phys. Lett. 2000, 319, 576. [Google Scholar] [CrossRef]
- Probst, M.; Deutsch, H.; Becker, K.; Mark, T.D. Calculations of absolute electron-impact ionization cross sections for molecules of technological relevance using the DM formalism. Int. J. Mass Spectrom. 2001, 206, 13–25. [Google Scholar] [CrossRef]
- Pitchford, L.C.; McKoy, B.V.; Chutjian, A.; Trajmar, S. Swarm Studies and Inelastic Electron–Molecule Collisions. In Proceedings of the Meeting of the Fourth International Swarm Seminar and the Inelastic Electron-Molecule Collisions Symposium 1985; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Janev, R.K.; Reiter, D. Collision processes of CHy and hydrocarbons with plasma electrons and protons. Phys. Plasmas 2002, 9, 4071. [Google Scholar] [CrossRef]
- Clark, R.E.H.; Reiter, D.H. Nuclear Fusion Research: Understanding Plasma-Surface Interactions; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Mark, T.D.; Dunn, G.H. (Eds.) Electron Impact Ionization; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Christophorou, L.G.; Olthoff, J.K. Fundamental Electron Interactions with Plasma Processing Gases; Springer: Boston, MA, USA, 2004. [Google Scholar]
- Kim, Y.K. Total ionization cross sections of molecules by electron impact. In Gaseous Dielectrics X; Christophorou, L.C., Olthoff, J.K., Vassiliou, P., Eds.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Tanaka, H.; Brunger, M.J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A.R.P. Scaled plane-wave Born cross sections for atoms and molecules. Rev. Mod. Phys. 2016, 88, 025004. [Google Scholar] [CrossRef]
- GAUSSIAN 03; Gaussian, Inc.: Wallingford, UK, 2003.
- Graves, V.; Cooper, B.; Tennyson, J. The efficient calculation of electron impact ionization cross sections with effective core potentials. J. Chem. Phys. 2021, 154, 114104. [Google Scholar] [CrossRef] [PubMed]
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 31 July 2022).
- Kumar, Y.; Kumar, M. Theoretical partial ionization cross sections by electron impact for production of cations from CH3OH, CO2 and NH3. Chem. Phys. Lett. 2020, 740, 137071. [Google Scholar] [CrossRef]
- Pal, S.; Kumar, J.; Mark, T.D. Differential, partial and total electron impact ionization cross sections for SF6. J. Chem. Phys. 2004, 120, 4658. [Google Scholar] [CrossRef] [PubMed]
- Hurly, J.J. Thermo physical Properties of Gaseous Tungsten Hexafluoride from Speed-of-Sound Measurements. Int. J. Thermophys. 2000, 21, 185. [Google Scholar] [CrossRef]
- Jung, H.; Hwang , J.; Chun, H.; Han, B. Elucidation of hydrolysis reaction mechanism of tungsten hexafluoride (WF6) using first-principles calculations. J. Ind. Eng. Chem. 2019, 70, 19. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, X.; Li, Y.; Kabbaj, N. Research status of replacement gases for SF6 in power industry. AIP Adv. 2020, 10, 050702. [Google Scholar] [CrossRef]
Ions | Mass-to-Charge Ratio m/z | Basner et al. [21] | NIST Chemistry EIMS Data [41] | Renormalized NIST EIMS Data [41] |
---|---|---|---|---|
19 | 0.4005 (−1) * | - | - | |
92 | 0.2018 (−2) | - | 0.5937 (−2) | |
102 | 0.4192 (−2) | - | 0.6583 (−2) | |
111 | 0.8073 (−2) | 0.1557 (−2) | 0.5098 (−2) | |
120 | 0.1288 (−1) | 0.1695 (−2) | 0.5550 (−2) | |
130 | 0.2111 (−1) | 0.6192 (−2) | 0.2026 (−1) | |
139 | 0.2111 (−1) | 0.5442 (−2) | - | |
184 | 0.3260 (−1) | 0.6823 (−2) | 0.2233 (−1) | |
203 | 0.4968 (−1) | 0.1057 (−1) | 0.3459 (−1) | |
222 | 0.9827 (−1) | 0.2405 (−1) | 0.7874 (−1) | |
241 | 0.8787 (−1) | 0.2543 (−1) | 0.8325 (−1) | |
260 | 0.8119 (−1) | 0.2819 (−1) | 0.9229 (−1) | |
279 | 0.5620 | 0.1972 | 0.6453 |
Ions | m/z | BR | Γ |
---|---|---|---|
19 | 0.1048 | 0.1296 | |
92 | 0.2627 (−1) * | 0.2514 | |
102 | 0.2023 (−1) | 0.1572 | |
111 | 0.2292 (−1) | 0.1434 | |
120 | 0.2627 (−1) | 0.13821 | |
130 | 0.3347 (−1) | 0.1374 | |
184 | 0.5663 (−1) | 0.2167 | |
203 | 0.4595 (−1) | 0.1603 | |
222 | 0.7834 (−1) | 0.1745 | |
241 | 0.5734 (−1) | 0.0967 | |
260 | 0.5855 (−1) | 0.0748 | |
279 | 0.4691 | 0.4447 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, K.; Luthra, M.; Bharadvaja, A.; Baluja, K.L. Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact. Atoms 2022, 10, 101. https://doi.org/10.3390/atoms10040101
Goswami K, Luthra M, Bharadvaja A, Baluja KL. Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact. Atoms. 2022; 10(4):101. https://doi.org/10.3390/atoms10040101
Chicago/Turabian StyleGoswami, Kanupriya, Meetu Luthra, Anand Bharadvaja, and Kasturi Lal Baluja. 2022. "Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact" Atoms 10, no. 4: 101. https://doi.org/10.3390/atoms10040101
APA StyleGoswami, K., Luthra, M., Bharadvaja, A., & Baluja, K. L. (2022). Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact. Atoms, 10(4), 101. https://doi.org/10.3390/atoms10040101