First Offline Results from the S3 Low-Energy Branch
Abstract
:1. Introduction
2. The S Low-Energy Branch
2.1. Gas Cell, RFQ Ion Guides and Mass Spectrometer
2.2. The GISELE Laser Laboratory
3. Results
3.1. RFQ Offline Tests
3.2. Laser Ion Source Offline Tests
4. Outlook and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Déchery, F.; Savajols, H.; Authier, M.; Drouart, A.; Nolen, J.; Ackermann, D.; Amthor, A.M.; Bastin, B.; Berryhill, A.; Boutin, D.; et al. The Super Separator Spectrometer S3 and the associated detection systems: SIRIUS & LEB-REGLIS3. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 376, 125–130. [Google Scholar] [CrossRef]
- Savajols, H.; Drouart, A.; Nolen, J. Physics avenue with the super separator spectrometer (S3) at the SPIRAL2 facility. In Proceedings of the 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei, Chamrousse, France, 20–24 March 2017. [Google Scholar]
- Ferrer, R.; Bastin, B.; Boilley, D.; Creemers, P.; Delahaye, P.; Liénard, E.; Fléchard, X.; Franchoo, S.; Ghys, L.; Huyse, M.; et al. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Déchery, F.; Drouart, A.; Savajols, H.; Nolen, J.; Authier, M.; Amthor, A.M.; Boutin, D.; Delferriére, O.; Gall, B.; Hue, A.; et al. Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S3. Eur. Phys. J. A 2015, 51, 1–16. [Google Scholar] [CrossRef]
- Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion, 1–9. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, Y.; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. The in-gas jet laser ion source: Resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 297, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Chapman, K. The transuranic elements and the island of stability. Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378. [Google Scholar] [CrossRef]
- Marsh, B.A.; Andel, B.; Andreyev, A.N.; Antalic, S.; Atanasov, D.; Barzakh, A.E.; Bastin, B.; Borgmann, C.; Capponi, L.; Cocolios, T.E.; et al. New developments of the in-source spectroscopy method at RILIS/ISOLDE. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 550–556. [Google Scholar] [CrossRef]
- Prime, E.J.; Lassen, J.; Achtzehn, T.; Albers, D.; Bricault, P.; Cocolios, T.; Dombsky, M.; Labrecque, F.; Lavoie, J.P.; Pearson, M.R.; et al. TRIUMF resonant ionization laser ion source: Ga, Al and Be radioactive ion beam development. Hyperfine Interact. 2006, 171, 127–134. [Google Scholar] [CrossRef]
- Neugart, R.; Billowes, J.; Bissell, M.L.; Blaum, K.; Cheal, B.; Flanagan, K.T.; Neyens, G.; Nörtershäuser, W.; Yordanov, D.T. Collinear laser spectroscopy at ISOLDE: New methods and highlights. J. Phys. G Nucl. Part. Phys. 2017, 44, 064002. [Google Scholar] [CrossRef]
- Cheal, B.; Forest, D.H. Collinear laser spectroscopy techniques at JYFL. Hyperfine Interact. 2014, 223, 63–71. [Google Scholar] [CrossRef]
- Cocolios, T.E.; Al Suradi, H.H.; Billowes, J.; Budinčević, I.; De Groote, R.P.; De Schepper, S.; Fedosseev, V.N.; Flanagan, K.T.; Franchoo, S.; Ruiz, R.F.G.; et al. The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Heinke, R.; Kron, T.; Raeder, S. High-resolution in-source laser spectroscopy in perpendicular geometry: Development and application of the PI-LIST. Hyperfine Interact. 2017, 238, 6. [Google Scholar] [CrossRef]
- Chrysalidis, K.; Wilkins, S.G.; Heinke, R.; Koszorus, A.; De Groote, R.; Fedosseev, V.N.; Marsh, B.; Rothe, S.; Garcia Ruiz, R.; Studer, D.; et al. First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 476–481. [Google Scholar] [CrossRef]
- Lecesne, N.; Alvès-Condé, R.; Coterreau, E.; De Oliveira, F.; Dubois, M.; Flambard, J.L.; Franberg, H.; Gottwald, T.; Jardin, P.; Lassen, J.; et al. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL. Rev. Sci. Instruments 2010, 81, 02A910. [Google Scholar] [CrossRef]
- Kudryavtsev, Y.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L.P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van Den Bergh, P.; et al. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 376, 345–352. [Google Scholar] [CrossRef]
- COMSOL-Software for Multiphysics Simulation. Available online: https://www.comsol.com/ (accessed on 6 January 2022).
- Ferrer, R.; Verlinde, M.; Verstraelen, E.; Claessens, A.; Huyse, M.; Kraemer, S.; Kudryavtsev, Y.; Romans, J.; Van den Bergh, P.; Van Duppen, P.; et al. Hypersonic nozzle for laser-spectroscopy studies at 17 K characterized by resonance-ionization-spectroscopy-based flow mapping. Phys. Rev. Res. 2021, 3, 043041. [Google Scholar] [CrossRef]
- Sels, S.; Ferrer, R.; Dockx, K.; Buitrago, C.G.; Huyse, M.; Kudryavtsev, Y.; Kraemer, S.; Raeder, S.; Van Den Bergh, P.; Van Duppen, P.; et al. Design and commissioning of an ion guide system for In-Gas Laser Ionization and Spectroscopy experiments. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 148–153. [Google Scholar] [CrossRef]
- Brubaker, W.M. An Improved Quadrupole Mass Analyzer. Adv. Mass Spectrosc. 1968, 4, 293–299. [Google Scholar]
- Retailleau, B.M. PILGRIM: Un Spectromètre de Masse Par Temps de vol Pour S3, et Brisure de Symétrie D’isopin Dans le 38K. Ph.D. Dissertation, Normandie Université, Paris, France, 2021. [Google Scholar]
- Thomas, J.-C.; Blank, B. The DESIR facility at SPIRAL2. Nucl. Struct. Probl. 2012, 224–229. [Google Scholar] [CrossRef]
- Chauveau, P.; Delahaye, P.; De France, G.; El Abir, S.; Lory, J.; Merrer, Y.; Rosenbusch, M.; Schweikhard, L.; Wolf, R.N. PILGRIM, a Multi-Reflection Time-of-Flight Mass Spectrometer for Spiral2-S3 at GANIL. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 376, 211–215. [Google Scholar] [CrossRef]
- Raeder, S.; Ferrer, R.; Granados, C.; Huyse, M.; Kron, T.; Kudryavtsev, Y.; Lecesne, N.; Piot, J.; Romans, J.; Savajols, H.; et al. Performance of Dye and Ti: Sapphire laser systems for laser ionization and spectroscopy studies at S3. Nucl. Inst. Methods Phys. Res. B 2020, 463, 86–95. [Google Scholar] [CrossRef]
- Verlinde, M.; Ferrer, R.; Claessens, A.; Granados, C.A.; Kraemer, S.; Kudryavtsev, Y.; Li, D.; Van Den Bergh, P.; Van Duppen, P.; Verstraelen, E. Single-longitudinal-mode pumped pulsed-dye amplifier for high-resolution laser spectroscopy. Rev. Sci. Instrum. 2020, 91, 103002. [Google Scholar] [CrossRef] [PubMed]
- Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K. An all-solid-state high repetiton rate titanium: Sapphire laser system for resonance ionization laser ion sources. AIP Conf. Proc. 2009, 1104, 114–119. [Google Scholar] [CrossRef]
- Moore, I.D.; Nieminen, A.; Billowes, J.; Campbell, P.; Geppert, C.; Jokinen, A.; Kessler, T.; Marsh, B.; Penttilä, H.; Rinta-Antila, S.; et al. Development of a laser ion source at IGISOL. J. Phys. G Nucl. Part. Phys. 2005, 31, S1499. [Google Scholar] [CrossRef]
- Rothe, S.; Fedosseev, V.N.; Kron, T.; Marsh, B.A.; Rossel, R.E.; Wendt, K.D. Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 561–564. [Google Scholar] [CrossRef]
- Sonnenschein, V.; Moore, I.D.; Raeder, S.; Reponen, M.; Tomita, H.; Wendt, K. Characterization of a pulsed injection-locked Ti: Sapphire laser and its application to high resolution resonance ionization spectroscopy of copper. Laser Phys. 2017, 27, 085701. [Google Scholar] [CrossRef]
- Dahl, D.A. SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 2000, 200, 3–25. [Google Scholar] [CrossRef]
- Meggers, W.F.; Corliss, C.H.; Scribner, B.F. Tables of Spectral-Line Intensities Part I—Arranged by Elements Part II—Arranged by Wavelengths, 2nd ed.; National Bureau of Standards: Washington, DC, USA, 1975; pp. 65–75.
- Studer, D. Resonanzionisationsspektroskopie Hochliegender Zustände in Dysprosium und Erbium zur Entwicklung effizienter Anregungsschemata und Bestimmung des Ersten Ionisationspotentials. Master’s Thesis, Johannes Gutenberg-Universitat Mainz, Mainz, Germany, 2015. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), [Online]. National Institute of Standards and Technology: Gaithersburg, MD, 2021. Available online: https://physics.nist.gov/asd (accessed on 21 November 2021).
- Romans, J. Commissioning of the S3-LEB. Bd Henri Becquerel, B.P. 55027, Caen, France. 2022; Manuscript in preparation. [Google Scholar]
- Gins, W.; de Groote, R.P.; Bissell, M.L.; Buitrago, C.G.; Ferrer, R.; Lynch, K.M.; Neyens, G.; Sels, S. Analysis of counting data: Development of the SATLAS Python package. Comput. Phys. Commun. 2018, 222, 286–294. [Google Scholar] [CrossRef]
- Frisch, A.; Aikawa, K.; Mark, M.; Ferlaino, F.; Berseneva, E.; Kotochigova, S. Hyperfine structure of laser-cooling transitions in fermionic erbium-167. Phys. Rev. A 2013, 88, 032508. [Google Scholar] [CrossRef] [Green Version]
- In-Gas Laser Ionization and Spectroscopy NETwork (IGLIS-NET) Home Page. 2021. Available online: https://research.kek.jp/group/wnsc/iglis-net/ (accessed on 3 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romans, J.; Ajayakumar, A.; Authier, M.; Boumard, F.; Caceres, L.; Cam, J.-F.; Claessens, A.; Damoy, S.; Delahaye, P.; Desrues, P.; et al. First Offline Results from the S3 Low-Energy Branch. Atoms 2022, 10, 21. https://doi.org/10.3390/atoms10010021
Romans J, Ajayakumar A, Authier M, Boumard F, Caceres L, Cam J-F, Claessens A, Damoy S, Delahaye P, Desrues P, et al. First Offline Results from the S3 Low-Energy Branch. Atoms. 2022; 10(1):21. https://doi.org/10.3390/atoms10010021
Chicago/Turabian StyleRomans, Jekabs, Anjali Ajayakumar, Martial Authier, Frederic Boumard, Lucia Caceres, Jean-François Cam, Arno Claessens, Samuel Damoy, Pierre Delahaye, Philippe Desrues, and et al. 2022. "First Offline Results from the S3 Low-Energy Branch" Atoms 10, no. 1: 21. https://doi.org/10.3390/atoms10010021
APA StyleRomans, J., Ajayakumar, A., Authier, M., Boumard, F., Caceres, L., Cam, J. -F., Claessens, A., Damoy, S., Delahaye, P., Desrues, P., Drouart, A., Duchesne, P., Ferrer, R., Fléchard, X., Franchoo, S., Gangnant, P., de Groote, R. P., Kraemer, S., Lecesne, N., ... Wendt, K. (2022). First Offline Results from the S3 Low-Energy Branch. Atoms, 10(1), 21. https://doi.org/10.3390/atoms10010021