Quantum Dynamics of Hydrogen-like Ions in a Spatially Nonuniform Magnetic Field: A Possible Application to Fusion Plasma
Abstract
:1. Introduction
2. Quantum Dynamics of the Confined Ions
3. Spectral Line Shape
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, U.; Seely, J.F.; Sheeley, N.R., Jr.; Suckewer, S.; Title, A.M. Magnetic field measurements in tokamak plasmas. J. Appl. Phys. 1984, 56, 2512–2518. [Google Scholar] [CrossRef]
- Feldman, U.; Seely, J.F.; Sheeley, N.R., Jr.; Suckewer, S.; Title, A.M. Magnetic field measurements based on the Zeeman splitting of forbidden transitions. Rev. Sci. Instrum. 1985, 56, 855–856. [Google Scholar]
- Gao, P.; Rhodes, M.; Peebles, W.A. Laser resonant fluorescence scattering in the Toroidal Cusp Experiment. Rev. Sci. Instrum. 1985, 56, 1071. [Google Scholar] [CrossRef]
- Welch, B.L.; Griem, H.R.; Terry, J.L.W.L.; Boivin, R.L.; Lipschultz, B.; Lumma, D.; Marmar, E.S.; McCracken, G.; Rost, J.C. Line shape measurements of visible light emission from the Alcator C-Mod tokamak. AIP Conf. Proc. 1996, 381, 159–166. [Google Scholar]
- Hey, J.D.; Chu, C.C.; Mertens, P. Zeeman Spectroscopy of Tokamak Edge Plasmas. AIP Conf. Proc. 2002, 645, 26–39. [Google Scholar]
- Hey, J.D.; Chu, C.C.; Mertens, P.; Brezinsek, S.; Unterberg, B. Atomic collision processes with ions at the edge of magnetically confined fusion plasmas. J. Phys. B At. Mol. Opt. Phys. 2004, 37, 2543–2567. [Google Scholar] [CrossRef]
- Koubiti, M.; Marandet, Y.; Escarguel, A.; Capes, H.; Godbert-Mouret, L.; Stamm, R.; Michelis, C.D.; Guirlet, R.; Mattioli, M. Analysis of asymmetric Dα spectra emitted in front of a neutralizer plate of the Tore-Supra ergodic divertor. Plasma Phys. Control. Fusion 2002, 44, 261. [Google Scholar] [CrossRef]
- Marandet, Y.; Genesio, P.; Koubiti, M.; Godbert-Mouret, L.; Felts, B.; Stamm, R.; Guirlet, H.C.R. Characterization of tokamak edge plasmas using spectroscopic line profiles. J. Nucl. Fusion 2004, 44, S118–S122. [Google Scholar] [CrossRef]
- Zushi, H.; Itoh, S.; Hanada, K.; Nakamura, K.; Sakamoto, M.; Jotaki, E.; Hasegawa, M.; Pan, Y.D.; Kulkarni, S.V.; Iyomasa, A.; et al. Overview of steady state tokamak plasma experiments in TRIAM-1M. Nucl. Fusion 2003, 43, 1600. [Google Scholar] [CrossRef]
- Shikama, T.; Kado, S.; Zushi, H.; Iwamae, A.; Tanaka, S. Application of the Zeeman patterns in Ov and H-alpha spectra to the local plasma diagnostics of the TRIAM-1M tokamak. Phys. Plasmas 2004, 11, 4701–4708. [Google Scholar] [CrossRef]
- Gu, M.F.; Holcomb, C.T.; Jayakuma, R.J.; Allen, S.L. Atomic models for the motional Stark effect diagnostic. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 095701. [Google Scholar] [CrossRef]
- Rosato, J.; Capes, H.; Ferri, S.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Stamm, R. Zeeman-Stark Profiles of Low-n Hydrogen Lines in Near Impact Regime. AIP Conf. Proc. 2008, 1058, 213–215. [Google Scholar]
- Iwamae, A.; Sugie, T.; Ogawa, H.; Kusama, Y. Synthesized intensity of emission lines of hydrogen isotopes and impurities in the ITER divertor plasma. Plasma Phys. Control. Fusion 2011, 53, 045005. [Google Scholar] [CrossRef]
- Koubiti, M.; Nakano, T.; Marandet, Y.; Mouret, L.; Rosato, J.; Stamm, R. Contribution of Stark-Doppler broadening of carbon impurity lines to the analysis of tokamak divertor plasmas. J. Phys. 2012, 397, 012025. [Google Scholar] [CrossRef] [Green Version]
- Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, Y.M.R. Accuracy of impact broadening models in low-density magnetized hydrogen plasmas. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 165701. [Google Scholar] [CrossRef] [Green Version]
- Touati, K.A.; Chenini, K.; Meftah, M.T. Profils de raies spectrales dans les plasmas magnétisés: Effet Stark Motionnel. Can. J. Phys. 2018, 96, 241–248. [Google Scholar] [CrossRef]
- Rosato, J.; Marandet, Y.; Stamm, R. Stark broadening by Lorentz fields in magnetically confined plasmas. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 105702. [Google Scholar] [CrossRef]
- Gao, W.; Huang, J.; Wu, C.; Xu, Z.; Hou, Y.; Jin, Z.; Chen, Y.; Zhang, P.; Zhang, L.; Wu, Z.; et al. Analysis of the Zeeman effect on D-alpha spectra on the EAST tokamak. Chin. Phys. B 2017, 26, 045203. [Google Scholar] [CrossRef]
- Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Touati, K.; Felts, B.; Capes, H.; Corre, Y.; Guirlet, R.; De Michelis, C. Spectroscopy of magnetized plasmas. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 365–372. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics; Mir Edition; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadhel, S.; Meftah, M.T.; Chenini, K. Quantum Dynamics of Hydrogen-like Ions in a Spatially Nonuniform Magnetic Field: A Possible Application to Fusion Plasma. Atoms 2022, 10, 20. https://doi.org/10.3390/atoms10010020
Fadhel S, Meftah MT, Chenini K. Quantum Dynamics of Hydrogen-like Ions in a Spatially Nonuniform Magnetic Field: A Possible Application to Fusion Plasma. Atoms. 2022; 10(1):20. https://doi.org/10.3390/atoms10010020
Chicago/Turabian StyleFadhel, Sara, Mohammed Tayeb Meftah, and Keltoum Chenini. 2022. "Quantum Dynamics of Hydrogen-like Ions in a Spatially Nonuniform Magnetic Field: A Possible Application to Fusion Plasma" Atoms 10, no. 1: 20. https://doi.org/10.3390/atoms10010020
APA StyleFadhel, S., Meftah, M. T., & Chenini, K. (2022). Quantum Dynamics of Hydrogen-like Ions in a Spatially Nonuniform Magnetic Field: A Possible Application to Fusion Plasma. Atoms, 10(1), 20. https://doi.org/10.3390/atoms10010020