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Abstract: In this work, we direct our attention to the study of the effect of a nonuniform and strong
magnetic field on the quantum properties of ions in plasma. We have assumed that the strong
magnetic field is a sum of two magnetic fields: one, the most intense, has a toroidal geometry,
whereas the other of less intensity (about the third of the first) is poloidal. Regarding the quantum
properties, we have focused our attention on obtaining the corresponding eigenenergy of n hydrogen-
like ion in this nonuniform magnetic field. Using the obtained eigenenergy, we investigated the
spectral line shape (Lyman-alpha) of three types of ions: He+, C5+, and Ar17+ for different magnetic
field magnitudes. In this study, we considered only Doppler and electronic Stark broadening of the
spectral line shapes.

Keywords: plasma; fusion; toroidal; poloidal; eigenenergy; Lyman-alpha

1. Introduction

The confinement of plasmas by adequate magnetic fields is the most highly developed
and reached technique to obtain a controlled fusion. A large part of the problem of
confinement has been obtaining a magnetic field geometry that effectively confines the
plasma. To reach this goal, a toroidal field is created by a set of toroidal magnets. It ensures
the confinement of the charged particles in the torus. However, it is shown that this
confinement is not quite sufficient and to further minimize the leakage of particles towards
the walls, the field lines must be helical along the torus. This is achieved by adding to the
toroidal field another magnetic field, called a poloidal field, which is perpendicular to it. To
guarantee these requirements, several devices and experiments must be prepared before
the startup of the fusion. In that sense, Feldman et al. discussed the measurement of the
poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of
the magnetic dipole radiation from heavy ions [1,2].

In the same year (1985), a dye laser induced resonant fluorescence scattering system
was installed on the Toroidal Cusp Experiment (TCX) by P. Gao et al. [3].

Measurements were made of the line shapes of the Balmer series of hydrogen/deuterium
in the edge and divertor regions of the Alcator C-Mod tokamak by Welch et al. [4] in 1996.
In 2002, J. D. Hey et al. [5,6], discussed the Zeeman spectroscopy method to diagnose
the tokamak. Koubiti et al. [7] analyzed the Dalpha/Halpha spectra to obtain several
neutral populations with different temperatures (about 1–3 eV and 10–30 eV). To improve
the analysis, Y. Marandet et al. [8], used an efficient fitting technique based on a genetic
algorithm (GA), to fit the model to the experimental spectra. The results of this analysis,
suggested the existence of a population of neutrals of several hundreds of electron volts.
On the other hand, the positions of emission of beryllium-like oxygen ions in the core
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region as well as the hydrogen atoms in the boundary region of the limiter shadow were
measured by means of the difference of the Zeeman patterns in the spectral shape in the
poloidal section of the TRIAM-M1 fusion device [9]. To determine magnetic field strength,
Shikama et al. resolved the σ components of the Zeeman spectra by a linear polarizer,
and they also measured the bulk ion temperature in the core region [10]. In 2008, M F
Gu et al. [11], presented detailed atomic physics models for the motional Stark effect (MSE)
diagnostic on magnetic fusion devices. In the same year J. Rosato et al. [12], presented
calculations of hydrogen Zeeman-Stark line profiles and discussed when the conditions for
impact ion broadening were almost satisfied [12]. Measurements were made using spectra
emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. In
2011, A Iwamae et al. [13], presented the intensity of emission lines in the ITER divertor:
the intensity of hydrogen isotopes and impurities was observed with the divertor central
optical system. In 2012, M Koubiti et al. [14] investigated the broadening mechanisms
affecting carbon lines emitted from tokamak divertor plasmas with an emphasis on the C IV
n = 6–7 (λ = 772.6 nm) line. For simplicity, they ignored the Zeeman effect by considering
only Doppler and Stark broadenings in the calculations. Therefore, these calculations,
which ignored the magnetic field effect, could be compared to spectra measured with the
use of a linear polarizer transmitting only the π component whose polarization is parallel to
the toroidal magnetic field. Comparison of theoretical profiles to high-resolution measured
C IV n = 6–7 line spectra allowed the determination of the several plasma parameters [14].
In the same year, J Rosato et al, calculated line shapes and S-matrix elements for the first
Lyman lines of hydrogen with two models proposed for retaining simultaneously the Stark
and Zeeman effects in the impact limit [15]. The Lorentz electric field ~v× ~B present in the
emitters’ frame of reference yielded a perturbation of the atomic energy levels, commonly
referred to as a ‘motional’ Stark effect [16,17]. In 2017, and based on passive spectroscopy,
the Dα atomic emission spectra in the boundary region of the plasma were measured by
a high resolution Optical Spectroscopic Multichannel Analysis (OSMA) system in EAST
tokamak by Wei Gao et al. [18].

In our study, limiting ourselves to hydrogen-like ions, we are interested, firstly, in
the influence of a nonuniform magnetic field on the quantum dynamics of ions located
in fusion plasma. The choice of this type of ion is didacted by its simple atomic structure.
Secondly we have used the obtained eigenenergy to determine the spectral line shape
(Lyman-alpha) of three types of ions, namely: He+, C5+, and Ar17+ for different magnetic
field magnitudes. Moreover, as we will see, the Zeeman separation, for large values of B0,
is much larger than the separation of the fine structure (for example, the latter is about 5 eV,
while the Zeeman separation is much larger for large values of B0). This leads us to work
in the following without fine structure.

Our paper is organized in four sections. The next section is devoted to presenting the
quantum mechanical equations that describe the ions in the presence of the nonuniform
magnetic field. We have obtained a new removal of the degeneracy by the magnetic field.
In Section 3, we present some spectral line shapes for Ly-alpha of three hydrogen-like
ions, for different magnetic fields and temperatures. In this same section, we conduct a
discussion. The fourth section is devoted to a conclusion.

2. Quantum Dynamics of the Confined Ions

Let start our work by considering the quantum dynamics of an ion embedded in
a strong nonuniform magnetic field. In this case, we will work with the Schroedinger
equation for a particle of spin of 1/2 (the electron) and an electric charge (-e) moving
in the nucleus field (Coulomb interaction) and in the nonuniform magnetic field. The
equation of this type of problem is commonly known as the Pauli equation. The dynamics
of this problem must be seen in the relativistic quantum mechanics via the Dirac equation;
however, it has been shown in many papers, such as [16,19], that in the presence of a strong
magnetic field, it is a good approximation to work with the Pauli equation and to neglect
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the fine structure effect. The main objective in this section is to obtain the eigenenergy of
that system. So, the Pauli Hamiltonian [20] is:

H =
1

2µ
(
−→
P − e

c
−→
A )2 − Z

e2

r
+ η
−→
S · −→B (1)

η =
µB
h̄

(2)

such that
−→
A (r, θ, φ) = − A(r)

sin(θ)
−→ur − ε0y

−→
i (3)

and
−→
B (r, θ, φ) =

−→∇ ×−→A (r, θ, φ) = −A(r) cos(θ)
r sin2(θ)

−→uφ + ε0
−→
k (4)

where we have used cartesian coordinates (
−→
i ,
−→
j ,
−→
k ) and spherical coordinates (−→ur ,−→uθ ,−→uφ).

The choice of ~A in (3) is made such that we obtain the desired geometry of the resulting
magnetic field in the tore. µ is the reduced mass, µB is Bohr’s magneton, and

−→
S is the spin

of the electron interacting with the magnetic field
−→
B (the spin–orbit coupling is neglected

here). ε0 is the strength of the magnetic along the z-axis, responsible to the poloidal field. In
this form of the magnetic field (4), we have implicitly considered that the observation will
be done in the direction parallel to the component of the magnetic field along z (the other
component of the magnetic field rotates along −→uφ inducing a zero average polarization).
Before we proceed, following the symmetry of the problem, we must express the two fields
(~A(~r) and ~B(~r)) in the spherical coordinates

−→
A =

(
− A(r)

sin(θ)
− ε0r sin θ2 sin φ cos φ

)
−→ur − ε0r sin θ cos θ sin φ cos φ−→uθ + ε0r sin θ sin2 φ−→uφ (5)

−→
B (r, θ, φ) = ε0 cos θ−→ur − ε0 sin θ−→uθ −

A(r) cos(θ)
r sin2(θ)

−→uφ. (6)

The dynamics of the ion in the magnetic field is governed by the time independent
Schrodinger given by (HΨ(r, θ, φ) = EΨ(r, θ, φ)), that is to say(

1
2µ

(
−→
P − e

c
−→
A )2 − Z

e2

r
+ η
−→
S · −→B

)
Ψ(r, θ, φ) = EΨ(r, θ, φ) (7)

or equivalently[
1

2µ
(
−→
P 2 − e

c
−→
P · −→A − e

c
−→
A · −→P +

e2

c2
−→
A 2)− Z

e2

r
+ η
−→
S · −→B

]
Ψ(r, θ, φ) = EΨ(r, θ, φ) (8)

where the momentum operator
−→
P must be expressed in spherical coordinates too, as

−→
P =

h̄
i

(
−→ur

∂

∂r
+−→uθ

1
r

∂

∂θ
+−→uφ

1
r sin θ

∂

∂φ

)
. (9)

We must express at first the products
−→
P · −→A and

−→
A · −→P : it easy to show that

−→
P · −→A Ψ(r, θ, φ) =

h̄
i

[
−A′(r)

sin θ
− 2

A(r)
r sin θ

]
Ψ(r, θ, φ) +

h̄
i
−→
A · −→∇Ψ(r, θ, φ), (10)

then

−→
P · −→A =

h̄
i

[
−A′(r)

sin θ
− 2

A(r)
r sin θ

]
+

h̄
i

(
− A(r)

sin(θ)
− ε0r sin2 θ sin φ cos φ

)
∂

∂r
, (11)
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and
−→
A · −→P =

h̄
i
−→
A · −→∇ =

h̄
i

(
− A(r)

sin(θ)
− ε0r sin2 θ sin φ cos φ

)
∂

∂r
. (12)

We substitute them into the above Pauli equation and neglecting the term of ε2
0 order:

1
2µ

 −h̄2
(

∂2

∂r2 +
2
r

∂
∂r +

1
r2 sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

r2 sin2 θ
∂2

∂φ2

)
− e

c
h̄
i

(
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

)
+ e2

c2

(
A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
) Ψ(r, θ, φ)

=

(
E + Z

e2

r
− η
−→
S · −→B

)
Ψ(r, θ, φ). (13)

On the other hand, we have

−→
S · −→B = SφBφ + SzBz = (− sin φSx + cos φSy) ·

−A(r) cos θ

r sin2 θ
+ ε0Sz (14)

where Bφ, Bz are the components of
−→
B along azumital angle φ and z, respectively, whereas

Pauli Spin Matrices are given by

Sx =
h̄
2

(
0 1
1 0

)
, Sy =

h̄
2

(
0 −i
i 0

)
, Sz =

h̄
2

(
1 0
0 −1

)
(15)

We put

Ψ(r, θ, φ) =

(
Ψ1(r, θ, φ)
Ψ2(r, θ, φ)

)
(16)

∆r =
∂2

∂r2 +
2
r

∂

∂r
(17)

∆θφ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 (18)

or also

r2E
(

Ψ1
Ψ2

)
=

1
2µ

 −h̄2(r2∆r + ∆θφ

)
− e

c r2 h̄
i

([
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

])
+ e2

c2 r2
(

A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
) ( Ψ1

Ψ2

)

−Ze2r
(

Ψ1
Ψ2

)
− rA(r) cos θ

sin2 θ
η

(
− sin φ

(
0 h̄

2
h̄
2 0

)
+ cos φ

(
0 −i h̄

2
i h̄

2 0

))(
Ψ1
Ψ2

)
+ηε0r2

( h̄
2 0
0 − h̄

2

)(
Ψ1
Ψ2

)
(19)



 1
2µ

 −h̄2(r2∆r + ∆θφ

)
− e

c
h̄
i r2
([
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

])
+ e2

c2 r2
(

A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
) − Ze2r

Ψ1

− rA(r) cos θ

sin2 θ
η
(
− h̄

2 sin φΨ2 − ih̄
2 cos φΨ2

)
+ ηε0r2 h̄

2 Ψ1 = r2EΨ1 1
2µ

 −h̄2(r2∆r + ∆θφ

)
− e

c
h̄
i r2
([
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

])
+ e2

c2 r2
(

A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
) − Ze2r

Ψ2

− rA(r) cos θ

sin2 θ
η
(
− h̄

2 sin φΨ1 +
ih̄
2 cos φΨ1

)
+ ηε0r2 h̄

2 Ψ2 = r2EΨ2


. (20)

We separate the real part and the imaginary part in the first equation
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
[
−h̄2

2µ

(
r2∆r + ∆θφ

)
− Ze2r + e2r2

2µc2

(
A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
)
− r2E + ηε0r2 h̄

2

]
Ψ1

+h̄ rA(r) cos θ

2 sin2 θ
η sin φΨ2 = 0

1
2µ

[
e
c h̄r2

([
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

])]
Ψ1 + h̄ rA(r) cos θ

2 sin2 θ
η cos φΨ2 = 0

. (21)

Dividing member by member, we obtain

tan φ =

[
−h̄2

2µ

(
r2∆r + ∆θφ

)
− Ze2r + e2r2

2µc2

(
A2(r)
sin2 θ

+ 2ε0rA(r) sin θ sin φ cos φ
)
− r2E + ηε0r2 h̄

2

]
Ψ1

1
2µ

[
e
c h̄r2

([
− A′(r)

sin θ − 2 A(r)
r sin θ + 2

−→
A · −→∇

])]
Ψ1

(22)

but (ε = 2µ

h̄2 E):

0 =

 −
(
r2∆r + ∆θφ

)
− 2µ

h̄2 Ze2r + e2

h̄2c2 r2 A2(r)
sin2 θ

− r2ε + η
µε0
h̄ r2

− e
h̄c

tan φ
sin θ

(
r2
[
−A′(r)− 2 e

h̄c
sin θ
tan φ ε0rA(r) sin θ sin φ cos φ− 2 A(r)

r + 2 sin θ
−→
A · −→∇

]) Ψ1. (23)

We replace the term in brackets by its average in the ground state (without magnetic field)
(Ψ100 ):

< tan φ

(
r2
[
−A′(r)− 2

e
h̄c

sin θ

tan φ
ε0rA(r) sin θ sin φ cos φ− 2

A(r)
r

+ 2 sin θ
−→
A · −→∇

])
>Ψ100 (24)

= < tan φ

(
r2
[
−A′(r)− 2

A(r)
r

+ 2 sin θ
(−→

A · −→∇
)])

>Ψ100= q1ε0 (25)

where
q1 =

45π

32Z2 (26)

and the subscript (100) stands for the principal quantum numbers (nlm). The term with
ε0 appears from the factor

(−→
A · −→∇

)
, whereas the factor with cos φ disappears because its

average over φ in [0, 2π] cancels, then

0 =

[
−
(

r2∆r + ∆θφ

)
− 2µ

h̄2 Ze2r +
e2

h̄2c2
r2 A2(r)

sin2 θ
− r2ε + η

µε0

h̄
r2 +

e
h̄c

q1ε0

sin θ

]
Ψ1. (27)

Now, we choose A(r) as:

A(r) = a2 B0

r
(28)

where B0 is a factor in the toroidal magnetic field along −→uφ; it has the magnetic field unit,
whereas “a” is a constant (that can be assimilated to Bohr radius); then, we obtain

0 =

[
−r2∆r −

2µ

h̄2 Ze2r− r2(ε− η
µε0

h̄
)

]
Ψ1 (29)

+

[
− 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

e2

h̄2c2
a4 B2

0

sin2 θ
+

e
h̄c

q1ε0

sin θ
− 1

sin2 θ

∂2

∂φ2

]
Ψ1. (30)

Now, we separate the radial part from the angular one

0 =

(
−r2∆r −

2µ

h̄2 Ze2r− r2(ε− η
µε0

h̄
)

)
R(r) ·Y(θ, φ) (31)

−
(

1
sin θ

∂

∂θ
(sin θ

∂

∂θ
)− e2

h̄2c2
a4 B2

0

sin2 θ
− e

h̄c
q1ε0

sin θ
+

1
sin2 θ

∂2

∂φ2

)
R(r) ·Y(θ, φ) (32)
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or equivalently

0 =

(
−r2∆r +

2µ

h̄2 Ze2r− r2(ε− η
µε0
h̄ )
)

R(r)

R(r)
(33)

−

(
1

sin θ
∂
∂θ (sin θ ∂

∂θ )−
e2

h̄2c2 a4 B2
0

sin2 θ
− e

h̄c
q1ε0
sin θ +

1
sin2 θ

∂2

∂φ2

)
Y(θ, φ)

Y(θ, φ)
, (34)

which is valid when each term is a constant λ(
−r2∆r − 2µ

h̄2 Ze2r− r2(ε− η
µε0
h̄ )
)

R(r)

R(r)
= −λ (35)(

1
sin θ

∂
∂θ (sin θ ∂

∂θ )−
e2

h̄2c2 a4 B2
0

sin2 θ
− e

h̄c
q1ε0
sin θ +

1
sin2 θ

∂2

∂φ2

)
Y(θ, φ)

Y(θ, φ)
= −λ. (36)

We multiply by sin2 θ to obtain a more adequate equation

(
sin θ ∂

∂θ (sin θ ∂
∂θ )−

e2

h̄2c2 a4B2
0 −

e
h̄c q1ε0 sin θ + ∂2

∂φ2

)
Y(θ, φ)

Y(θ, φ)
= −λ sin2 θ (37)(

sin θ
∂

∂θ
(sin θ

∂

∂θ
)− e2

h̄2c2
a4B2

0 −
e

h̄c
q1ε0 sin θ +

∂2

∂φ2

)
Y(θ, φ) = −λ sin2 θ ·Y(θ, φ). (38)

We separate the equation with respect the angles θ and φ:

Y(θ, φ) = T(θ) · exp(imφ), m ∈ Z (39)

0 = sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
T(θ) +

(
α + β sin θ + λ sin2 θ

)
(40)

where
α = −m2 − e2

h̄2c2 a4B2
0

β = − e
h̄c q1a2ε0

(41)

By solving these equations we obtain the eigenenergy as

EN,n,m(B0, ε0) = −
µ

2h̄2
Z2e4(

N + n + 1 +
√

m2 + e2

h̄2c2 a4B2
0 +

e
2h̄c q1a2ε0

)2 +
µBε0

2
(42)

where
m = 0,±1,±2, . . .

n = 0, 1, 2, . . .
N = 0, 1, 2, . . .

(43)

Here, (N, n, m) play the role of the quantum numbers (n, l, m). We can check that, when
the magnetic fields B0, ε0 are zero, we recover the Bohr levels of energy. We have now the
eigenenergy of the system; we will use it in the study of the spectral radiative properties of
the fusion plasma in the next section.

3. Spectral Line Shape

Before presenting the main results (mainly in figures), we must mention two things:
the first concerns the strong magnetic field that is encountered also in certain stars and a
white dwarf. The second thing is to say we have considered, in order to make the figures
(Figures 1–3) readable, that, in one part the Stark broadening is (overestimated), and that
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the Doppler broadening is Lorentzian on other part. Only in the last figure (Figure 4) we
have considered, as it must be, a convolution between the Doppler (gaussian) and the Stark
(Lorentzian) broadening. The choice of the values of B0 and ε0 is arbitrary, but we have
made them large enough to hide the fine structure effect and kept B0 much larger than ε0
(B0/ε0 ∼ 3), because the poloidal field ε0 is small in front of the toroidal B0 field.
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Figure 1. Ly-alpha line for Hydrogen-like Helium for Ne = 1016 cm−3, T = 105 K, B0 = 100 Tesla, and
ε0 = 30 Tesla. The line + symbol is for B = 0 Tesla.
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Figure 2. Ly-alpha line for Hydrogen-like Helium for Ne = 1016 cm−3, T = 105 K, B0 = 100 Tesla, and
ε0 = 30 Tesla and for B0 = 200 Tesla and ε0 = 67 Tesla.
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Figure 3. Ly-alpha line for Hydrogen-like Carbon for Ne = 1016 cm−3, T = 106 K, B0 = 100 Tesla, and
ε0 = 30 Tesla and for B0 = 600 Tesla and ε0 = 200 Tesla.
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Figure 4. Ly-alpha line for Hydrogen-like Argon for Ne = 1016 cm−3, T = 107 K, B0 = 200 Tesla, and
ε0 = 68 Tesla, B0 = 1000 Tesla and ε0 = 333, and B0 = 5000 Tesla and ε0 = 1670 Tesla.

In Figures 1 and 2 (Figure 1 contains the line without magnetic field, B = 0), we present
the Ly-alpha line for Hydrogen-like Helium for Ne = 1016 cm−3, 105 K, B0 = 100 Tesla, and
ε0 = 30 Tesla and for B0 = 200 Tesla and ε0 = 67. The presence of the magnetic field enhances
the degeneracy removal and the gives the profile two peaks; increasing the value of the
field (B0 = 200 Tesla and ε0 = 67 Teslas), we notice a shift of the centers of the two peaks
towards the small frequencies towards the red). We can interpret the shift as follows: from
Equation (43), it is clear that the effect of the magnetic field on the energy levels makes these
levels far from each other when increasing the value of this field. Consequently, the center
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of the line, which is the energy difference between these levels, moves with the increasing
magnetic field. Then, the center of the line undergoes a shift.

In Figure 3, we have the Ly-alpha line for Hydrogen-like Carbon for Ne = 10 16 cm−3,
T = 106 K, B0 = 100 Tesla, and ε0 = 30 Teslas and B0 = 600 Tesla and ε0 = 200 Teslas, we
notice the same as the previous remarks, but the shift increases between the two peaks of
the line.

For the Ly-alpha line for Hydrogen-like Argon for Ne = 1016 cm−3, T = 107 K,
B0 = 200 Tesla, and ε0 = 68 Teslas, B0 = 1000 Teslas and ε0 = 333 Teslas, and B0 = 5000 Tesla
and ε0 = 1670, in this case, we observe a noticeable shift towards the red, going from
1000 Tesla to 5000 Tesla; the second peak is shifted about 267 eV (Figure 4). In all figures, we
used a convolution product to introduce the Doppler broadening, and the final profile will
not be a Gaussian profile but a convolution between the Gaussian and the Zeeman effect.

4. Conclusions

In conclusion, in this paper, we have solved the quantum problem of hydrogen-
like ions in a nonuniform and intense magnetic field. We have assumed that the intense
magnetic field is a sum of two magnetic fields: the most intense field has a toroidal geometry,
whereas the less intense field (about the third) is poloidal. The obtained results allowed us
to investigate the spectral line shape (Lyman-alpha) of three types of ions: He+ , C5+, and
Ar17+ for different magnetic field magnitudes. We remark that, the Zeeman separation is
as large as the magnetic field is large, and the charge number Z is great. Another feature
must be noticed: the left Zeeman component is near the line without a magnetic field
(see Figure 1). In future studies, this model of magnetic field geometry can be studied in
relativistic quantum mechanics via the Dirac equation.
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