Spinor Field in FLRW Cosmology
Abstract
:1. Introduction
2. Basic Equation
- do not depend on the spinor field nonlinearity;
- occur due to the spinor affine connections;
- appear depending on space-time geometry as well as the system of coordinates;
- impose restrictions on spinor field and/or space-time geometry;
- depend on the value of k which defines the type of curvature, though do not vanish ever for .
3. Numerical Solutions
3.1. Barotropic Equation of State
3.2. Chaplygin Gas
3.3. Modified Chaplygin Gas
3.4. Modified Quintessence
4. Conclusions and Discussions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smoot, G.F.; Bennett, C.L.; Kogut, A.; Wright, E.L.; Aymon, J.; Boggess, N.W.; Cheng, E.S.; De Amici, G.; Gulkis, S.; Hauser, M.G. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 1992, 396, L1–L5. [Google Scholar] [CrossRef]
- Hinshaw, G.; Spergel, D.N.; Verde, L.; Hill, R.S.; Meyer, S.S.; Barnes, C.; Bennett, C.L.; Halpern, M.; Jarosik, N.; Kogut, A.; et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum. Astrophys. J. Suppl. Ser. 2003, 148, 135. [Google Scholar] [CrossRef]
- Friedmann, A.A. Uber die Krummung des Raumes. Z. Phys. 1922, 10, 377. [Google Scholar] [CrossRef]
- Friedmann, A.A. Uber die Moglichkeit einer Welt mit konstanter negativer Krummung des Raumes. Z. Phys. 1924, 21, 326. [Google Scholar] [CrossRef]
- Hubble, E. A relation between distance and radial velocity among extra-galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168. [Google Scholar] [CrossRef]
- Lemaitre, G.H. l’Univers en expansion. Annales Soc. Sci. Brux. A 1933, 53, 51. [Google Scholar]
- Robertson, H.P. Kinematics and world-structure. Astrophys. J. 1935, 82, 284. [Google Scholar] [CrossRef]
- Robertson, H.P. Kinematics and world-structure II. Astrophys. J. 1936, 83, 187. [Google Scholar] [CrossRef]
- Robertson, H.P. Kinematics and world-structure III. Astrophys. J. 1936, 83, 257. [Google Scholar] [CrossRef]
- Walker, A.G. On Milne’s Theory of World-Structure. Proc. Lond. Math. Soc. 1937, 42, 90–127. [Google Scholar] [CrossRef]
- Ribas, M.O.; Devecchi, F.P.; Kremer, G.M. Fermions as sources of accelerated regimes in cosmology. Phys. Rev. D 2005, 72, 123502. [Google Scholar] [CrossRef]
- Saha, B. Nonlinear spinor field in Bianchi type-I cosmology: Inflation, isotropization, and late time acceleration. Phys. Rev. D 2006, 74, 124030. [Google Scholar] [CrossRef]
- Saha, B.; Rikhvitsky, V.S. Nonlinear spinor fields in anisotropic Universe filled with viscous fluid: Exact solutions and qualitative analysis. Phys. Part. Nucl. 2009, 40, 612. [Google Scholar] [CrossRef]
- Fabbri, L. A Discussion on Dirac Field Theory, No-Go Theorems and Renormalizability. Int. J. Theor. Phys. 2013, 52, 634. [Google Scholar] [CrossRef]
- Fabbri, L. Conformal gravity with the most general ELKO matter. Phys. Rev. D 2012, 85, 047502. [Google Scholar] [CrossRef]
- Vignolo, S.; Fabbri, L.; Cianci, R. Dirac spinors in Bianchi-I f(R)-cosmology with torsion. J. Math. Phys. 2011, 52, 112502. [Google Scholar] [CrossRef]
- Popławski, N. Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D 2012, 85, 107502. [Google Scholar] [CrossRef]
- Saha, B. Spinor field nonlinearity and space-time geometry. Phys. Part. Nucl. 2018, 49, 146. [Google Scholar] [CrossRef]
- Saha, B. Spinor fields in spherically symmetric space-time. Eur. Phys. J. Plus 2018, 133, 461. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Rybakov, Y.P.; Saha, B. Spinor fields in spherical symmetry: Einstein-Dirac and other space-times. Eur. Phys. J. Plus 2020, 135, 124. [Google Scholar] [CrossRef]
- Saha, B. Spinors in cylindrically symmetric space-time. Universe 2020, 6, 152. [Google Scholar] [CrossRef]
- Saha, B. Time-dependent Spinor field in a static cylindrically symmetric space-time. Eur. Phys. J. Plus 2022, 137, 1063. [Google Scholar] [CrossRef]
- Saha, B.; Zakharov, E.I.; Rikhvitsky, V.S. Spinor field in a spherically symmetric Friedmann Universe. Discret. Cont. Mod. Appl. Comput. Sci. 2020, 28, 132. [Google Scholar]
- Gavrikov, A.S.; Saha, B.; Rikhvitsky, V.S. Applying Friedmann models to describe the evolution of the Universe based on data from the SAI Supernovae Catalog. Discret. Cont. Mod. Appl. Comput. Sci. 2020, 28, 120. [Google Scholar] [CrossRef]
- Saha, B. Spinor field in Bianchi type-I Universe: Regular solutions. Phys. Rev. D 2001, 64, 123501. [Google Scholar] [CrossRef]
- Saha, B. Spinor model of a perfect fluid and their applications in Bianchi type-I and FRW models. Astrophys. Space Sci. 2011, 331, 243. [Google Scholar] [CrossRef]
- Narlikar, J.V. Introduction to Relativity; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Λ term. Int. J. Mod. Phys. D 2000, 9, 373. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Saha, B. Anisotropic cosmological models with perfect fluid and dark energy reexamined. Int. J. Theor. Phys. 2006, 45, 983. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant—The weight of the vacuum. Phys. Rep. 2003, 380, 235. [Google Scholar] [CrossRef]
- Sahni, V. Dark Matter and Dark Energy. Lect. Notes Phys. 2004, 653, 141. [Google Scholar]
- Saha, B. Anisotropic cosmological models with a perfect fluid and a Λ term. Astrophys. Space Sci. 2006, 302, 83. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265. [Google Scholar] [CrossRef]
- Bilic, N.; Tupper, G.B.; Viollier, R.D. Unification of Dark Matter and Dark Energy: The Inhomogeneous Chaplygin Gas. Phys. Lett. B 2002, 353, 17. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef]
- Benaoum, H.B. Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid. Universe 2022, 8, 340. [Google Scholar] [CrossRef]
- Benaoum, H.B. Modified Chaplygin Gas Cosmology. Adv. High Energy Phys. 2012, 2012, 357802. [Google Scholar] [CrossRef]
- Fock, V. Geometrization of Dirac theory of electrons. Z. Phys. 1929, 57, 261. [Google Scholar] [CrossRef]
- Fock, V.; Iwanenko, D. Quantun linear geometry and parallel transfer. C. R. Acad. 1929, 188, 1470. [Google Scholar]
- Fock, V.; Ivanenko, D. On a possible geometric interpretation of relativistic quantun theory. Z. Phys. 1929, 54, 798. [Google Scholar] [CrossRef]
- Pauli, W. Über die formulierung der naturgesetze mit füng homogenen koordinaten. Ann. Phys. 1933, 5, 337. [Google Scholar] [CrossRef]
- Mitskievich, N.V. Physical Fields in General Theory of Relativity; Nauka: Moscow, Russion, 1969. [Google Scholar]
- Wigner, E.P. Eine Bemerkung zu Einsteins neuer Formulierung des allgemeinen Relativit tsprinzips. In Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics; Wightman, A.S., Ed.; The Scientific Papers, Volume A/3; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, B. Spinor Field in FLRW Cosmology. Universe 2023, 9, 243. https://doi.org/10.3390/universe9050243
Saha B. Spinor Field in FLRW Cosmology. Universe. 2023; 9(5):243. https://doi.org/10.3390/universe9050243
Chicago/Turabian StyleSaha, Bijan. 2023. "Spinor Field in FLRW Cosmology" Universe 9, no. 5: 243. https://doi.org/10.3390/universe9050243
APA StyleSaha, B. (2023). Spinor Field in FLRW Cosmology. Universe, 9(5), 243. https://doi.org/10.3390/universe9050243