Strong Interaction Dynamics and Fermi β Decay in the Nucleon and the Nucleus
Abstract
:1. Introduction
2. Charge Symmetry Breaking and Fermi Decay of the Neutron
3. Detecting Charge Symmetry Breaking in the Nucleon
4. Nuclear Superallowed Decay
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
CKM | Cabibbo–Kobashi–Maskawa |
References
- Cirigliano, V.; Garcia, A.; Gazit, D.; Naviliat-Cuncic, O.; Savard, G.; Young, A. Precision Beta Decay as a Probe of New Physics. arXiv 2019, arXiv:1907.02164. [Google Scholar]
- Brodeur, M.; Buzinsky, N.; Caprio, M.A.; Cirigliano, V.; Clark, J.A.; Fasano, P.J.; Formaggio, J.A.; Gallant, A.T.; Garcia, A.; Gandolfi, S.; et al. Nuclear β decay as a probe for physics beyond the Standard Model. arXiv 2023, arXiv:2301.03975. [Google Scholar]
- Kobayashi, M.; Maskawa, T. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652–657. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. C 2020, 102, 045501. [Google Scholar] [CrossRef]
- Zyla, P.A. et al. [Particle Data Group] Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Miller, G.A.; Schwenk, A. Isospin-symmetry-breaking corrections to superallowed Fermi beta decay: Formalism and schematic models. Phys. Rev. C 2008, 78, 035501. [Google Scholar] [CrossRef]
- Miller, G.A.; Schwenk, A. Isospin-symmetry-breaking corrections to superallowed Fermi beta decay: Radial excitations. Phys. Rev. C 2009, 80, 064319. [Google Scholar] [CrossRef]
- Hen, O.; Miller, G.A.; Piasetzky, E.; Weinstein, L.B. Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys. 2017, 89, 045002. [Google Scholar] [CrossRef]
- Condren, L.; Miller, G.A. Nucleon-nucleon short-ranged correlations, β decay, and the unitarity of the CKM matrix. Phys. Rev. C 2022, 106, L062501. [Google Scholar] [CrossRef]
- Crawford, J.W.; Miller, G.A. Charge-symmetry-breaking effects on neutron β decay in nonrelativistic quark models. Phys. Rev. C 2022, 106, 065502. [Google Scholar] [CrossRef]
- Guichon, P.A.M.; Thomas, A.W.; Saito, K. Fermi matrix element with isospin breaking. Phys. Lett. B 2011, 696, 536–538. [Google Scholar] [CrossRef]
- Londergan, J.T.; Pang, A.; Thomas, A.W. Probing charge symmetry violating quark distributions in semiinclusive leptoproduction of hadrons. Phys. Rev. D 1996, 54, 3154–3161. [Google Scholar] [CrossRef] [PubMed]
- Londergan, J.T.; Murdock, D.P.; Thomas, A.W. Experimental tests of charge symmetry violation in parton distributions. Phys. Rev. D 2005, 72, 036010. [Google Scholar] [CrossRef]
- Londergan, J.T.; Peng, J.C.; Thomas, A.W. Charge Symmetry at the Partonic Level. Rev. Mod. Phys. 2010, 82, 2009–2052. [Google Scholar] [CrossRef]
- Jia, S. Charge Symmetry Violation Quark Distributions via Precise Measurement of π+/π− Ratios in Semi-Inclusive Deep Inelastic Scattering. Ph.D. Thesis, Temple University, Setagaya, Tokyo, Japan, 2022. [Google Scholar]
- Miller, G.A.; Nefkens, B.M.K.; Slaus, I. Charge symmetry, quarks and mesons. Phys. Rept. 1990, 194, 1–116. [Google Scholar] [CrossRef]
- Miller, G.A.; Opper, A.K.; Stephenson, E.J. Charge symmetry breaking and QCD. Ann. Rev. Nucl. Part. Sci. 2006, 56, 253–292. [Google Scholar] [CrossRef]
- Behrends, R.E.; Sirlin, A. Effect of mass splittings on the conserved vector current. Phys. Rev. Lett. 1960, 4, 186–187. [Google Scholar] [CrossRef]
- Isgur, N.; Karl, G. Ground State Baryons in a Quark Model with Hyperfine Interactions. Phys. Rev. D 1979, 20, 1191–1194. [Google Scholar] [CrossRef]
- Isgur, N. Isospin violating mass differences and mixing angles: The role of quark masses. Phys. Rev. D 1980, 21, 779, Erratum in Phys. Rev. D 1981, 23, 817. [Google Scholar] [CrossRef]
- Londergan, J.T.; Thomas, A.W. The validity of charge symmetry for parton distributions. Prog. Part. Nucl. Phys. 1998, 41, 49. [Google Scholar] [CrossRef]
- Benesh, C.J.; Goldman, J.T. Charge symmetry breaking in the valence quark distributions of the nucleon. Phys. Rev. C 1997, 55, 441–447. [Google Scholar] [CrossRef]
- Bodenstein, R.; Benesch, J.; Berg, J.; Bogacz, A.; Brooks, S.; Coxe, A.; Deitrick, K.; Douglas, D.; Gamage, B.; Hoffstaetter, G.; et al. Current Status of the FFA@CEBAF Energy Upgrade Study. In Proceedings of the IPAC2022, 13th International Particle Accelerator Conference, Bangkok, Thailand, 12–17 June 2022; pp. 2494–2496. [Google Scholar] [CrossRef]
- Towner, I.S.; Hardy, J.C. An Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay. Phys. Rev. C 2008, 77, 025501. [Google Scholar] [CrossRef]
- MacDonald, W.M. Isobaric Spin in Nuclear Physics; Fox, J.D., Robson, D., Eds.; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Wilkinson, D.H. (Ed.) Isospin in Nuclear Physics; North Holland: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Auerbach, N. Coulomb corrections to superallowed beta decay in nuclei. Phys. Rev. C 2009, 79, 035502. [Google Scholar] [CrossRef]
- Auerbach, N.; Bui, M.L. Coulomb corrections to Fermi beta decay in nuclei. Nucl. Phys. A 2022, 1027, 122521. [Google Scholar] [CrossRef]
- Lam, Y.H.; Smirnova, N.A.; Caurier, E. Isospin nonconservation in sd-shell nuclei. Phys. Rev. C 2013, 87, 054304. [Google Scholar] [CrossRef]
- Subedi, R.; Shneor, R.; Monaghan, P.; Anderson, B.D.; Aniol, K.; Annand, J.; Arrington, J.; Benaoum, H.; Bertozzi, W.; Benmokhtar, F.; et al. Probing Cold Dense Nuclear Matter. Science 2008, 320, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Fomin, N.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Bukhari, M.H.S.; Christy, M.E.; Chudakov, E.; et al. New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett. 2012, 108, 092502. [Google Scholar] [CrossRef] [PubMed]
- Hen, O.; Sargsian, M.; Weinstein, L.B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D.W.; Braverman, M.; Brooks, W.K.; Gilad, S.; Adhikari, K.P.; et al. Momentum sharing in imbalanced Fermi systems. Science 2014, 346, 614–617. [Google Scholar] [CrossRef]
- Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O. The nuclear contacts and short range correlations in nuclei. Phys. Lett. B 2018, 780, 211–215. [Google Scholar] [CrossRef]
- Stevens, S.; Ryckebusch, J.; Cosyn, W.; Waets, A. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions. Phys. Lett. B 2018, 777, 374–380. [Google Scholar] [CrossRef]
- Fomin, N.; Higinbotham, D.; Sargsian, M.; Solvignon, P. New Results on Short-Range Correlations in Nuclei. Annu. Rev. Nucl. Part. Sci. 2017, 67, 129–159. [Google Scholar] [CrossRef]
- Atti, C.C.d.; Morita, H. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei. Phys. Rev. C 2017, 96, 064317. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, C.; Ren, Z.; Gao, C. Probing the high-momentum component in the nucleon momentum distribution by nucleon emission from intermediate-energy nucleus-nucleus collisions. Phys. Rev. C 2017, 96, 054603. [Google Scholar] [CrossRef]
- Weiss, R.; Korover, I.; Piasetzky, E.; Hen, O.; Barnea, N. Energy and momentum dependence of nuclear short-range correlations—Spectral function, exclusive scattering experiments and the contact formalism. Phys. Lett. B 2019, 791, 242–248. [Google Scholar] [CrossRef]
- Duer, M. et al. [CLAS] Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett. 2019, 122, 172502. [Google Scholar] [CrossRef]
- Duer, M. et al. [CLAS] Probing high-momentum protons and neutrons in neutron-rich nuclei. Nature 2018, 560, 617–621. [Google Scholar] [CrossRef]
- Paschalis, S.; Petri, M.; Macchiavelli, A.O.; Hen, O.; Piasetzky, E. Nucleon-nucleon correlations and the single-particle strength in atomic nuclei. Phys. Lett. B 2020, 800, 135110. [Google Scholar] [CrossRef]
- Lynn, J.E.; Lonardoni, D.; Carlson, J.; Chen, J.W.; Detmold, W.; Gandolfi, S.; Schwenk, A. Ab initio short-range-correlation scaling factors from light to medium-mass nuclei. J. Phys. G 2020, 47, 045109. [Google Scholar] [CrossRef]
- Ryckebusch, J.; Cosyn, W.; Vieijra, T.; Casert, C. Isospin composition of the high-momentum fluctuations in nuclei from asymptotic momentum distributions. Phys. Rev. C 2019, 100, 054620. [Google Scholar] [CrossRef]
- Lyu, M.; Myo, T.; Toki, H.; Horiuchi, H.; Xu, C.; Wan, N. High-momentum components in the 4He nucleus caused by inter-nucleon correlations. Phys. Lett. B 2020, 805, 135421. [Google Scholar] [CrossRef]
- Schmidt, A. et al. [CLAS] Probing the core of the strong nuclear interaction. Nature 2020, 578, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Korover, I. et al. [CLAS] 12C(e,e’pN) measurements of short range correlations in the tensor-to-scalar interaction transition region. Phys. Lett. B 2021, 820, 136523. [Google Scholar] [CrossRef]
- Weiss, R.; Denniston, A.W.; Pybus, J.R.; Hen, O.; Piasetzky, E.; Schmidt, A.; Weinstein, L.B.; Barnea, N. Extracting the number of short-range correlated nucleon pairs from inclusive electron scattering data. Phys. Rev. C 2021, 103, L031301. [Google Scholar] [CrossRef]
- Segarra, E.P.; Pybus, J.R.; Hauenstein, F.; Higinbotham, D.W.; Miller, G.A.; Piasetzky, E.; Schmidt, A.; Strikman, M.; Weinstein, L.B.; Hen, O. Short-range correlations and the nuclear EMC effect in deuterium and helium-3. Phys. Rev. Res. 2021, 3, 023240. [Google Scholar] [CrossRef]
- Aumann, T.; Barbieri, C.; Bazin, D.; Bertulani, C.A.; Bonaccorso, A.; Dickhoff, W.H.; Gade, A.; Gómez-Ramos, M.; Kay, B.P.; Moro, A.M.; et al. Quenching of single-particle strength from direct reactions with stable and rare-isotope beams. Prog. Part. Nucl. Phys. 2021, 118, 103847. [Google Scholar] [CrossRef]
- Guo, W.M.; Li, B.A.; Yong, G.C. Imprints of high-momentum nucleons in nuclei on hard photons from heavy-ion collisions near the Fermi energy. Phys. Rev. C 2021, 104, 034603. [Google Scholar] [CrossRef]
- Lapikas, L. Quasi-elastic electron scattering off nuclei. Nucl. Phys. A 1993, 553, 297c–308c. [Google Scholar] [CrossRef]
- Kramer, G.J.; Blok, H.P.; Lapikas, L. A Consistent analysis of (e,e-prime p) and (d,He-3) experiments. Nucl. Phys. A 2001, 679, 267–286. [Google Scholar] [CrossRef]
- Atkinson, M.C.; Dickhoff, W.H. Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca. Phys. Lett. B 2019, 798, 135027. [Google Scholar] [CrossRef]
- Geurts, W.J.W.; Allaart, K.; Dickhoff, W.H.; Muther, H. Spectroscopic factors for nucleon knock-out from O-16 at small missing energy. Phys. Rev. C 1996, 53, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Radici, M.; Meucci, A.; Dickhoff, W.H. Spectroscopic information from different theoretical descriptions of (un)polarized (e,e’p) reactions. Eur. Phys. J. A 2003, 17, 65–69. [Google Scholar] [CrossRef]
- Dickhoff, W.H.; Barbieri, C. Selfconsistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 2004, 52, 377–496. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, G.A. Strong Interaction Dynamics and Fermi β Decay in the Nucleon and the Nucleus. Universe 2023, 9, 209. https://doi.org/10.3390/universe9050209
Miller GA. Strong Interaction Dynamics and Fermi β Decay in the Nucleon and the Nucleus. Universe. 2023; 9(5):209. https://doi.org/10.3390/universe9050209
Chicago/Turabian StyleMiller, Gerald A. 2023. "Strong Interaction Dynamics and Fermi β Decay in the Nucleon and the Nucleus" Universe 9, no. 5: 209. https://doi.org/10.3390/universe9050209
APA StyleMiller, G. A. (2023). Strong Interaction Dynamics and Fermi β Decay in the Nucleon and the Nucleus. Universe, 9(5), 209. https://doi.org/10.3390/universe9050209