Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering
Abstract
1. Introduction
2. Formalism
2.1. CENS Cross Section
2.2. Inelastic Cross Sections
3. Results and Discussion
Constraining Ar
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freedman, D.Z. Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current. Phys. Rev. D 1974, 9, 1389. [Google Scholar] [CrossRef]
- Akimov, D. et al. [COHERENT Collaboration] Observation of Coherent Elastic Neutrino-Nucleus Scattering. Science 2017, 357, 1123. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Akimov, D. et al. [COHERENT Collaboration] COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering. arXiv 2018, arXiv:1804.09459. [Google Scholar]
- Akimov, D. et al. [COHERENT Collaboration] First Constraint on Coherent Elastic Neutrino-Nucleus Scattering in Argon. Phys. Rev. D 2019, 100, 115020. [Google Scholar] [CrossRef][Green Version]
- Akimov, D. et al. [COHERENT Collaboration] First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. Phys. Rev. Lett. 2021, 126, 012002. [Google Scholar] [CrossRef] [PubMed]
- Akimov, D. et al. [COHERENT Collaboration] Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 2022, 129, 081801. [Google Scholar] [CrossRef]
- Liao, J.; Marfatia, D. Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential. Phys. Lett. B 2017, 775, 47–54. [Google Scholar] [CrossRef]
- Dent, J.B.; Dutta, B.; Liao, S.; Newstead, J.L.; Strigari, L.E.; Walker, J.W. Accelerator and reactor complementarity in coherent neutrino-nucleus scattering. Phys. Rev. D 2018, 97, 035009. [Google Scholar] [CrossRef][Green Version]
- Aristizabal Sierra, D.; Rojas, N.; Tytgat, M. Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors. J. High Energy Phys. 2018, 2018, 197. [Google Scholar] [CrossRef][Green Version]
- Denton, P.B.; Farzan, Y.; Shoemaker, I.M. Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data. J. High Energy Phys. 2018, 2018, 37. [Google Scholar] [CrossRef][Green Version]
- Kosmas, T.; Papoulias, D.; Tortola, M.; Valle, J. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments. Phys. Rev. D 2017, 96, 063013. [Google Scholar] [CrossRef][Green Version]
- Blanco, C.; Hooper, D.; Machado, P. Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments. arXiv 2019, arXiv:1901.08094. [Google Scholar] [CrossRef]
- Aristizabal Sierra, D.; De Romeri, V.; Rojas, N. CP violating effects in coherent elastic neutrino-nucleus scattering processes. J. High Energy Phys. 2019, 9, 69. [Google Scholar] [CrossRef][Green Version]
- Cadeddu, M.; Giunti, C.; Li, Y.; Zhang, Y. Average CsI Neutron Density Distribution from COHERENT Data. Phys. Rev. Lett. 2018, 120, 072501. [Google Scholar] [CrossRef][Green Version]
- Ciuffoli, E.; Evslin, J.; Fu, Q.; Tang, J. P-wave contributions to B→ψππ decays in the perturbative QCD approach. Phys. Rev. D 2018, 97, 113003. [Google Scholar] [CrossRef][Green Version]
- Aristizabal Sierra, D.; Liao, J.; Marfatia, D. Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data. J. High Energy Phys. 2019, 2019, 141. [Google Scholar] [CrossRef][Green Version]
- Papoulias, D.; Kosmas, T.; Sahu, R.; Kota, V.; Hota, M. Constraining nuclear physics parameters with current and future COHERENT data. Phys. Lett. B 2020, 800, 135133. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A. et al. [CCM Collaboration] First dark matter search results from Coherent CAPTAIN-Mills. Phys. Rev. D 2022, 106, 012001. [Google Scholar] [CrossRef]
- Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: Current results and future prospects. J. High Energy Phys. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Vázquez, A.C.; Vergara, B.C.; Chavez, C.R.; Da Motta, H.; D’Olivo, J.C.; et al. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE). JINST 2016, 11, P07024. [Google Scholar] [CrossRef][Green Version]
- Agnolet, G. et al. [MINER Collaboration] Background studies for the MINER Coherent Neutrino Scattering reactor experiment. Nucl. Instrum. Meth. A 2017, 853, 53. [Google Scholar] [CrossRef][Green Version]
- Belov, V.; Brudanin, V.; Egorov, V.; Filosofov, D.; Fomina, M.; Gurov, Y.; Korotkova, L.; Lubashevskiy, A.; Medvedev, D.; Pritula, R.; et al. The νGeN experiment at the Kalinin Nuclear Power Plant. J. Instrum. 2015, 10, P12011. [Google Scholar] [CrossRef]
- Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; et al. The ν-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering. Eur. Phys. J. C 2017, 77, 506. [Google Scholar] [CrossRef][Green Version]
- Billard, J.; Carr, R.; Dawson, J.; Figueroa-Feliciano, E.; Formaggio, J.A.; Gascon, J.; Heine, S.T.; De Jesus, M.; Johnston, J.; Lasserre, T.; et al. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex. J. Phys. G 2017, 44, 105101. [Google Scholar] [CrossRef][Green Version]
- Wong, H.T. Neutrino-nucleus coherent scattering and dark matter searches with sub-keV germanium detector. Nucl. Phys. A 2010, 844, 229c–233c. [Google Scholar] [CrossRef]
- Choi, J.J.; Jeon, E.J.; Kim, J.Y.; Kim, K.W.; Kim, S.H.; Kim, S.K.; Kim, Y.D.; Ko, Y.J.; Koh, B.C.; Ha, C.; et al. Exploring coherent elastic neutrino-nucleus scattering using reactor electron antineutrinos in the NEON experiment. Eur. Phys. J. C 2023, 83, 226. [Google Scholar] [CrossRef]
- Akindele, O.A.; Berryman, J.M.; Bowden, N.S.; Carr, R.; Conant, A.J.; Huber, P.; Langford, T.J.; Link, J.M.; Littlejohn, B.R.; Fernandez-Moroni, G.; et al. High Energy Physics Opportunities Using Reactor Antineutrinos. arXiv 2022, arXiv:2203.07214. https://arxiv.org/abs/2203.07214. [Google Scholar]
- Hofstadter, R. Electron Scattering and Nuclear Structure. Rev. Mod. Phys. 1956, 28, 214. [Google Scholar] [CrossRef]
- De Vries, H.; De Jager, C.W.; De Vries, C. Nuclear charge-density-distribution parameters from elastic electron scattering. Atom. Data Nucl. Data Tabl. 1987, 36, 495. [Google Scholar] [CrossRef]
- Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.A.; Schellenberg, L.; Shera, E.B.; de Jager, C.W. Nuclear Ground State Charge Radii from Electromagnetic Interactions. Atom. Data Nucl. Data Tabl. 1995, 60, 177. [Google Scholar] [CrossRef][Green Version]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. Atom. Data Nucl. Data Tabl. 2013, 99, 69. [Google Scholar] [CrossRef]
- Thiel, M.; Sfienti, C.; Piekarewicz, J.; Horowitz, C.; Vanderhaeghen, M. Neutron skins of atomic nuclei: Per aspera ad astra. J. Phys. G 2019, 46, 093003. [Google Scholar] [CrossRef][Green Version]
- Donnelly, T.; Dubach, J.; Sick, I. Isospin dependences in parity-violating electron scattering. Nucl. Phys. A 1989, 503, 589. [Google Scholar] [CrossRef]
- Abrahamyan, S. et al. [PREX Collaboration] New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei. Phys. Rev. Lett. 2012, 108, 112502. [Google Scholar]
- Horowitz, C.J.; Ahmed, Z.; Jen, C.M.; Rakhman, A.; Souder, P.A.; Dalton, M.M.; Liyanage, N.; Paschke, K.D.; Saenboonruang, K.; Silwal, R.; et al. Weak charge form factor and radius of 208Pb through parity violation in electron scattering. Phys. Rev. C 2012, 85, 032501. [Google Scholar] [CrossRef][Green Version]
- Kumar, K.S. Electroweak probe of neutron skins of nuclei. Ann. Phys. 2020, 412, 168012. [Google Scholar] [CrossRef]
- Patton, K.; Engel, J.; McLaughlin, G.C.; Schunck, N. Neutrino-nucleus coherent scattering as a probe of neutron density distributions. Phys. Rev. C 2012, 86, 024612. [Google Scholar] [CrossRef][Green Version]
- Klein, S.; Nystrand, J. Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 1999, 60, 014903. [Google Scholar] [CrossRef][Green Version]
- Helm, R.H. Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei. Phys. Rev. 1956, 104, 1466. [Google Scholar] [CrossRef]
- Payne, C.G.; Bacca, S.; Hagen, G.; Jiang, W.; Papenbrock, T. Coherent elastic neutrino-nucleus scattering on from first principles. Phys. Rev. C 2019, 100, 061304. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Hernandez, J.A.; Piekarewicz, J. Electroweak probes of ground state densities. Phys. Rev. C 2019, 100, 054301. [Google Scholar] [CrossRef][Green Version]
- Co’, G.; Anguiano, M.; Lallena, A. Nuclear structure uncertainties in coherent elastic neutrino-nucleus scattering. J. Cosmol. Astropart. Phys. 2020, 4, 44. [Google Scholar]
- Hoferichter, M.; Menéndez, J.; Schwenk, A. Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses. Phys. Rev. D 2020, 102, 074018. [Google Scholar] [CrossRef]
- Tomalak, O.; Machado, P.; Pandey, V.; Plestid, R. Flavor-dependent radiative corrections in coherent elastic neutrino-nucleus scattering. J. High Energy Phys. 2021, 2021, 097. [Google Scholar] [CrossRef]
- Tanabashi, M. et al. [Particle Data Group] Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef][Green Version]
- Abdullah, M.; Aristizabal Sierra, D.; Dutta, B.; Strigari, L.E. Coherent Elastic Neutrino-Nucleus Scattering with directional detectors. arXiv 2020, arXiv:2003.11510. [Google Scholar] [CrossRef]
- Van Dessel, N.; Jachowicz, N.; Nikolakopoulos, A. Forbidden transitions in neutral- and charged-current interactions between low-energy neutrinos and argon. Phys. Rev. C 2019, 100, 055503. [Google Scholar] [CrossRef][Green Version]
- Ryckebusch, J.; Waroquier, M.; Heyde, K.; Moreau, J.; Ryckbosch, D. An RPA model for the description of one-nucleon emission processes and application to 16O(γ, N) reactions. Nucl. Phys. A 1988, 476, 237. [Google Scholar] [CrossRef]
- Ryckebusch, J.; Heyde, K.; Van Neck, D.; Waroquier, M. Aspects of the final-state interaction and long-range correlations in quasi-elastic (e, e’p) and (e, e’n) reactions. Nucl. Phys. A 1989, 503, 694. [Google Scholar] [CrossRef]
- Jachowicz, N.; Rombouts, S.; Heyde, K.; Ryckebusch, J. Cross sections for neutral-current neutrino-nucleus interactions: Applications for 12C and 16O. Phys. Rev. C 1999, 59, 3246. [Google Scholar] [CrossRef][Green Version]
- Jachowicz, N.; Heyde, K.; Ryckebusch, J.; Rombouts, S. Continuum random phase approximation approach to charged-current neutrino-nucleus scattering. Phys. Rev. C 2002, 65, 025501. [Google Scholar] [CrossRef]
- Jachowicz, N.; Heyde, K.; Ryckebusch, J. Cross sections for neutral-current neutrino scattering on 208 Pb. Phys. Rev. C 2002, 66, 055501. [Google Scholar] [CrossRef]
- Jachowicz, N.; Vantournhout, K.; Ryckebusch, J.; Heyde, K. Identifying Neutrinos and Antineutrinos in Neutral-Current ScatteringReactions. Phys. Rev. Lett. 2004, 93, 082501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jachowicz, N.; McLaughlin, G. Reconstructing supernova-neutrino spectra using low-energy beta beams. Phys. Rev. Lett. 2006, 96, 172301. [Google Scholar] [CrossRef][Green Version]
- Pandey, V.; Jachowicz, N.; Ryckebusch, J.; Van Cuyck, T.; Cosyn, W. Quasielastic contribution to antineutrino-nucleus scattering. Phys. Rev. C 2014, 89, 024601. [Google Scholar] [CrossRef][Green Version]
- Pandey, V.; Jachowicz, N.; Van Cuyck, T.; Ryckebusch, J.; Martini, M. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C 2015, 92, 024606. [Google Scholar] [CrossRef][Green Version]
- Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics. Phys. Rev. C 2016, 94, 054609. [Google Scholar] [CrossRef][Green Version]
- Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T. A dependence of quasielastic charged-current neutrino-nucleus cross sections. Phys. Rev. C 2018, 97, 044616. [Google Scholar] [CrossRef][Green Version]
- Nikolakopoulos, A.; Jachowicz, N.; Van Dessel, N.; Niewczas, K.; González-Jiménez, R.; Udías, J.M.; Pandey, V. Electron versus muon neutrino induced cross sections in charged current quasielastic processes. Phys. Rev. Lett. 2019, 123, 052501. [Google Scholar] [CrossRef]
- Van Dessel, N.; Nikolakopoulos, A.; Jachowicz, N. Lepton kinematics in low-energy neutrino-argon interactions. Phys. Rev. C 2020, 101, 045502. [Google Scholar] [CrossRef][Green Version]
- Nikolakopoulos, A.; Pandey, V.; Spitz, J.; Jachowicz, N. Modeling quasielastic interactions of monoenergetic kaon decay-at-rest neutrinos. arXiv 2020, arXiv:2010.05794. [Google Scholar] [CrossRef]
- Tohyama, M. Application of extended random-phase approximation with ground-state correlations to collective excitations of 16O. J. Phys. Conf. Ser. 2014, 529, 012026. [Google Scholar] [CrossRef]
- Papoulias, D.; Kosmas, T.; Kuno, Y. Recent Probes of Standard and Non-standard Neutrino Physics With Nuclei. Front. Phys. 2019, 7, 191. [Google Scholar] [CrossRef]
- Antonello, M. et al. [MicroBooNE, LAr1-ND and ICARUS-WA104 Collaboration] A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:1503.01520. [Google Scholar]
- Abi, B. et al. [DUNE Collaboration] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Amaudruz, P. et al. [DEAP-3600 Collaboration] First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Phys. Rev. Lett. 2018, 121, 071801. [Google Scholar] [CrossRef][Green Version]
- Agnes, P. et al. [DarkSide Collaboration] Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef][Green Version]
- Calvo, J. et al. [ArDM Collaboration] Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC. J. Cosmol. Astropart. Phys. 2017, 3, 3. [Google Scholar]
- Hime, A. [MiniCLEAN Collaboration]. The MiniCLEAN Dark Matter Experiment. arXiv 2011, arXiv:1110.1005. [Google Scholar]
- Ottermann, C.R.; Schmitt, C.H.; Simon, G.G.; Borkowski, F.; Walther, V.H. Elastic electron scattering from 40Ar. Nucl. Phys. A 1982, 379, 396. [Google Scholar] [CrossRef]
- Duda, G.; Kemper, A.; Gondolo, P. Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data. J. Cosmol. Astropart. Phys. 2007, 4, 12. [Google Scholar] [CrossRef]
- Lewin, J.; Smith, P. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 1996, 6, 87–112. [Google Scholar] [CrossRef][Green Version]
i | (MeV) | # N | |||
---|---|---|---|---|---|
p | 1 | −43.7029 | 1.00 | 2 | |
p | 2 | −31.4496 | 1.00 | 4 | |
p | 3 | −27.3921 | 1.00 | 2 | |
p | 4 | −17.7027 | 1.00 | 6 | |
p | 5 | −12.0822 | 1.00 | 2 | |
p | 6 | −10.9243 | 0.50 | 2 | |
n | 1 | −48.3047 | 1.00 | 2 | |
n | 2 | −35.2020 | 1.00 | 4 | |
n | 3 | −31.0247 | 1.00 | 2 | |
n | 4 | −21.1035 | 1.00 | 6 | |
n | 5 | −16.1116 | 1.00 | 2 | |
n | 6 | −14.0266 | 1.00 | 4 | |
n | 7 | −7.2108 | 0.25 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Dessel, N.; Pandey, V.; Ray, H.; Jachowicz, N. Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe 2023, 9, 207. https://doi.org/10.3390/universe9050207
Van Dessel N, Pandey V, Ray H, Jachowicz N. Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe. 2023; 9(5):207. https://doi.org/10.3390/universe9050207
Chicago/Turabian StyleVan Dessel, Nils, Vishvas Pandey, Heather Ray, and Natalie Jachowicz. 2023. "Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering" Universe 9, no. 5: 207. https://doi.org/10.3390/universe9050207
APA StyleVan Dessel, N., Pandey, V., Ray, H., & Jachowicz, N. (2023). Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe, 9(5), 207. https://doi.org/10.3390/universe9050207