Unimodular Theory of Gravity in Light of the Latest Cosmological Data
Abstract
:1. Introduction
2. Field Decomposition in Unimodular Gravity
3. Field Equations in Unimodular Gravity
4. Generalized Cosmological Constant with Radiation
5. Methodology and Datasets
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Anderson, J.L.; Finkelstein, D. Cosmological Constant and Fundamental Length. Am. J. Phys. 1971, 39, 901–904. [Google Scholar] [CrossRef]
- Lorentz, H.A.; Einstein, A. The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity; Dover: New York, NY, USA, 1952. [Google Scholar]
- Henneaux, M.; Teitelboim, C. The cosmological constant and general covariance. Phys. Lett. B 1989, 222, 195–199. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Unimodular theory of gravity and the cosmological constant. J. Math. Phys. 1991, 32, 1337–1340. [Google Scholar] [CrossRef]
- Finkelstein, D.R.; Galiautdinov, A.A.; Baugh, J.E. Unimodular relativity and cosmological constant. J. Math. Phys. 2001, 42, 340–346. [Google Scholar] [CrossRef]
- Smolin, L. Quantization of unimodular gravity and the cosmological constant problems. Phys. Rev. D 2009, 80, 084003. [Google Scholar] [CrossRef]
- Jiroušek, P. Unimodular Approaches to the Cosmological Constant Problem. Universe 2023, 9, 131. [Google Scholar] [CrossRef]
- Kursunoglu, B.; Mintz, S.L.; Perlmutter, A. (Eds.) High-Energy Physics, Proceedings of the 20th Annual Orbis Scientiae, Miami, FL, USA, 17–21 January 1983; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Buchmüller, W.; Dragon, N. Einstein gravity from restricted coordinate invariance. Phys. Lett. B 1988, 207, 292–294. [Google Scholar] [CrossRef]
- Unruh, W.G. Unimodular theory of canonical quantum gravity. Phys. Rev. D 1989, 40, 1048–1052. [Google Scholar] [CrossRef]
- Jain, P.; Karmakar, P.; Mitra, S.; Panda, S.; Singh, N.K. Testing unimodular gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 020. [Google Scholar] [CrossRef]
- Jain, P.; Jaiswal, A.; Karmakar, P.; Kashyap, G.; Singh, N.K. Cosmological implications of unimodular gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 003. [Google Scholar] [CrossRef]
- Álvarez, E. Can one tell Einstein’s unimodular theory from Einstein’s general relativity? J. High Energy Phys. 2005, 2005, 002. [Google Scholar] [CrossRef]
- Álvarez, E.; Faedo, A.F. Unimodular cosmology and the weight of energy. Phys. Rev. D 2007, 76, 064013. [Google Scholar] [CrossRef]
- Gao, C.; Brandenberger, R.; Cai, Y.; Chen, P. Cosmological perturbations in unimodular gravity. J. Cosmol. Astropart. Phys. 2014, 2014, 021. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Unimodular-mimetic cosmology. Class. Quantum Gravity 2016, 33, 125017. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Saridakis, E.N. Inflationary cosmology in unimodular F(T) gravity. Mod. Phys. Lett. A 2017, 32, 1750114. [Google Scholar] [CrossRef]
- Rajabi, F.; Nozari, K. Unimodular f (R,T) gravity. Phys. Rev. D 2017, 96, 084061. [Google Scholar] [CrossRef]
- Rajabi, F.; Nozari, K. Energy condition in unimodular f(R, T) gravity. Eur. Phys. J. C 2021, 81, 247. [Google Scholar] [CrossRef]
- Costantini, A.; Elizalde, E. A reconstruction method for anisotropic universes in unimodular F(R)-gravity. Eur. Phys. J. C 2022, 82, 1127. [Google Scholar] [CrossRef]
- Cho, I.; Singh, N.K. Unimodular theory of gravity and inflation. Class. Quantum Gravity 2015, 32, 135020. [Google Scholar] [CrossRef]
- Singh, N.K. Unimodular constraint on global scale invariance. Mod. Phys. Lett. A 2013, 28, 1350130. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Unimodular mimetic F(R) inflation. Astrophys. Space Sci. 2016, 361, 236. [Google Scholar] [CrossRef]
- Linares Cedeño, F.; Nucamendi, U. Revisiting cosmological diffusion models in Unimodular Gravity and the H0 tension. Phys. Dark Universe 2021, 32, 100807. [Google Scholar] [CrossRef]
- Agrawal, A.; Mishra, B.; Moraes, P. Unimodular gravity traversable wormholes. Eur. Phys. J. Plus 2023, 138, 275. [Google Scholar] [CrossRef]
- Landau, S.J.; Benetti, M.; Perez, A.; Sudarsky, D. Cosmological constraints on unimodular gravity models with diffusion. Phys. Rev. D 2023, 108, 043524. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Bay, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results—I. Overview and the cosmological legacy of Planck. A&A 2020, 641, A1. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; An, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early Dark Energy can Resolve the Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef]
- Agrawal, P.; Cyr-Racine, F.Y.; Pinner, D.; Randall, L. Rock ’n’ Roll Solutions to the Hubble Tension. arXiv 2019, arXiv:astro-ph.CO/1904.01016. [Google Scholar] [CrossRef]
- Karwal, T.; Raveri, M.; Jain, B.; Khoury, J.; Trodden, M. Chameleon early dark energy and the Hubble tension. Phys. Rev. D 2022, 105, 063535. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Li, L.; Wang, S.J.; Yu, W.W. Chameleon dark energy can resolve the Hubble tension. Phys. Rev. D 2021, 103, 121302. [Google Scholar] [CrossRef]
- Renk, J.; Zumalacárregui, M.; Montanari, F.; Barreira, A. Galileon gravity in light of ISW, CMB, BAO and H0 data. J. Cosmol. Astropart. Phys. 2017, 10, 020. [Google Scholar] [CrossRef]
- Adi, T.; Kovetz, E.D. Can conformally coupled modified gravity solve the Hubble tension? Phys. Rev. D 2021, 103, 023530. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Q.G.; Wang, K. Distance priors from Planck final release. J. Cosmol. Astropart. Phys. 2019, 2019, 028. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306–312. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophys. J. 2002, 573, 37. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Q.G. Hubble constant and sound horizon from the late-time universe. Phys. Rev. D 2021, 103, 043513. [Google Scholar] [CrossRef]
- Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB. Astrophys. J. 2003, 593, 622–629. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z∼0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 2016, 014. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221–1233. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope. Mon. Not. Roy. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [Google Scholar] [CrossRef]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the universe up to z ≈ 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 2012, 006. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z~2. Mon. Not. R. Astron. Soc. 2015, 450, L16–L20. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% determination of the local value of the hubble constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Camarena, D.; Marra, V. On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference. Mon. Not. R. Astron. Soc. 2021, 504, 5164–5171. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 1998, 496, 605. [Google Scholar] [CrossRef]
- Lemos, P.; Lee, E.; Efstathiou, G.; Gratton, S. Model independent H(z) reconstruction using the cosmic inverse distance ladder. Mon. Not. Roy. Astron. Soc. 2019, 483, 4803–4810. [Google Scholar] [CrossRef]
- Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. Roy. Astron. Soc. 2015, 449, 835–847. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Bautista, J.E.; Vargas-Magaña, M.; Dawson, K.S.; Percival, W.J.; Brinkmann, J.; Brownstein, J.; Camacho, B.; Comparat, J.; Gil-Marín, H.; Mueller, E.M.; et al. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample. Astrophys. J. 2018, 863, 110. [Google Scholar] [CrossRef]
- Zhao, G.B.; Wang, Y.; Saito, S.; Gil-Marín, H.; Percival, W.J.; Wang, D.; Chuang, C.H.; Ruggeri, R.; Mueller, E.M.; Zhu, F.; et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: A tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. R. Astron. Soc. 2018, 482, 3497–3513. [Google Scholar] [CrossRef]
- Blomqvist, M.; du Mas des Bourboux, H.; Busca, N.G.; de Sainte Agathe, V.; Rich, J.; Balland, C.; Bautista, J.E.; Dawson, K.; Font-Ribera, A.; Guy, J.; et al. Baryon acoustic oscillations from the cross-correlation of Lyorption and quasars in eBOSS DR14. A&A 2019, 629, A86. [Google Scholar] [CrossRef]
- Hu, W.; Sugiyama, N. Small-Scale Cosmological Perturbations: An Analytic Approach. Astrophys. J. 1996, 471, 542. [Google Scholar] [CrossRef]
z | Ref. | z | Ref. | ||||
---|---|---|---|---|---|---|---|
0.09 | 69 | 12 | [45] | 0.3802 | 83 | 13.5 | [46] |
0.07 | 69.0 | 19.6 | [47] | 0.4004 | 77 | 10.2 | [46] |
0.12 | 68.6 | 26.2 | [47] | 0.4247 | 87.1 | 11.2 | [46] |
0.20 | 72.9 | 29.6 | [47] | 0.4497 | 92.8 | 12.9 | [46] |
0.28 | 88.8 | 36.6 | [47] | 0.4783 | 80.9 | 9 | [46] |
0.17 | 83 | 8 | [48] | 0.47 | 89 | 23 | [49] |
0.27 | 77 | 14 | [48] | 0.48 | 97 | 62 | [50] |
0.4 | 95 | 17 | [48] | 0.88 | 90 | 40 | [50] |
0.9 | 117 | 23 | [48] | 1.3 | 168 | 17 | [48] |
0.1791 | 75 | 4 | [51] | 1.43 | 177 | 18 | [48] |
0.1993 | 75 | 5 | [51] | 1.53 | 140 | 14 | [48] |
0.3519 | 83 | 14 | [51] | 1.75 | 202 | 40 | [48] |
0.5929 | 104 | 13 | [51] | 1.037 | 154 | 20 | [51] |
0.6797 | 92 | 8 | [51] | 1.363 | 160 | 33.6 | [52] |
0.7812 | 105 | 12 | [51] | 1.965 | 186.5 | 50.4 | [52] |
0.8754 | 125 | 17 | [51] |
Survey | z | Measurement | Observation | Reference | |
---|---|---|---|---|---|
6dFGS | 0.106 | 2.9762 | 0.1329 | [56] | |
SDSS MGS | 0.15 | 4.4657 | 0.1681 | [57] | |
BOSS DR12 | 0.38 | 1518 | 20 | [58] | |
BOSS DR12 | 0.38 | 81.5 | 1.7 | [58] | |
BOSS DR12 | 0.51 | 1977 | 24 | [58] | |
BOSS DR12 | 0.51 | 90.5 | 1.7 | [58] | |
BOSS DR12 | 0.61 | 2283 | 28 | [58] | |
BOSS DR12 | 0.61 | 97.3 | 1.8 | [58] | |
BOSS DR14 | 0.72 | 16.08472 | 0.41278 | [59] | |
eBOSS QSO | 0.978 | 1586.18 | 284.93 | [60] | |
eBOSS QSO | 0.978 | 113.72 | 14.63 | [60] | |
eBOSS QSO | 1.23 | 1769.08 | 159.67 | [60] | |
eBOSS QSO | 1.23 | 131.44 | 12.42 | [60] | |
eBOSS QSO | 1.526 | 1768.77 | 96.59 | [60] | |
eBOSS QSO | 1.526 | 148.11 | 12.75 | [60] | |
eBOSS QSO | 1.944 | 1807.98 | 146.46 | [60] | |
eBOSS QSO | 1.944 | 172.63 | 14.79 | [60] | |
eBOSS Ly | 2.34 | 37.41 | 1.86 | [61] | |
eBOSS Ly | 2.34 | 8.86 | 0.29 | [61] | |
eBOSS QSOxLy | 2.35 | 36.3 | 1.8 | [61] | |
eBOSS QSOxLy | 2.35 | 9.20 | 0.36 | [61] | |
eBOSS combined | 2.34 | 37 | 1.3 | [61] | |
eBOSS combined | 2.34 | 9.00 | 0.22 | [61] |
Data Sets | Parameter | Standard Gravity | Unimodular Gravity |
---|---|---|---|
SN + DA | 6 | ||
6 | |||
BAO + CMB | |||
6 | |||
SN + DA + BAO + CMB | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.K.; Kashyap, G. Unimodular Theory of Gravity in Light of the Latest Cosmological Data. Universe 2023, 9, 469. https://doi.org/10.3390/universe9110469
Singh NK, Kashyap G. Unimodular Theory of Gravity in Light of the Latest Cosmological Data. Universe. 2023; 9(11):469. https://doi.org/10.3390/universe9110469
Chicago/Turabian StyleSingh, Naveen K., and Gopal Kashyap. 2023. "Unimodular Theory of Gravity in Light of the Latest Cosmological Data" Universe 9, no. 11: 469. https://doi.org/10.3390/universe9110469
APA StyleSingh, N. K., & Kashyap, G. (2023). Unimodular Theory of Gravity in Light of the Latest Cosmological Data. Universe, 9(11), 469. https://doi.org/10.3390/universe9110469