Revisiting Hansen’s Ideal Frame Propagation with Special Perturbations—1: Basic Algorithms for Osculating Elements
Abstract
:1. Introduction
2. The Orbital Plane and the Geometry of the Kepler Problem
2.1. The Orbital Plane
2.2. The Keplerian Hodograph
2.3. The Keplerian Orbit in Terms of the Hodographic Constants
3. The Basic Set of Ideal Elements for Perturbed Kepler Motion
3.1. Ideal Frames
3.2. HODEI Formulation
3.3. The Timing on the Osculating Ellipse
3.4. Initialization
4. Time Transformation and Fictitious-Time Elements
4.1. Laplace’s Time-Regularization
4.2. Time Elements
4.3. ORBELTI Formulation
5. Alternative Formulations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Solution of the Kepler Problem in the Extended Phase Space
Appendix A.1. Family of Solutions by Hamilton–Jacobi
Appendix A.2. The Hill-Similar Variables
1 | Note that Deprit provided much more than claimed in the conclusions of his seminal paper, where the variation of the in-track variable in the ideal frame is explicitly listed on p. 13 of [22] as Equation (96). The integration of the latter makes the solution of Kepler’s equation dispensable and extends the validity of the variation equations to the integration of parabolic and hyperbolic orbits. As illustrated in [82], time-regularizing Deprit’s variation equations is a trivial operation that furnishes Deprit’s ideal elements (replacing the time element by the non-linearly evolving polar angle) with the same functionality as the elements derived by the Dromo software developers three decades later in [107] and further refined in [66]. |
2 | A modified form of this differential system was proposed by the developers of the Dromo software, who referred their ideal reference to the departure apsidal frame and, as customary, dealt with the non-dimensional components of the eccentricity vector and instead of the hodographic velocities C and S, cf. [66]. In the fictitious time, the complexity of the differential equations is mostly analogous in both approaches. However, this is not true for the physical-time variations, where the evaluation of the differential equations , , , is clearly more demanding that the one of Equations (51) and (52), cf. [92]. The convenience of using C and S instead of and was realized by the developers of the Dromo software in [65], where they preferred to derive the hodographic velocities analytically as the arbitrary integration constants stemming from the solution of Equation (90) for the Keplerian case, in which vanishes. |
References
- Encke, J.F. Über eine neue Methode der Berechnung der Planetenstörungen von J. F. Encke. Astron. Nachrichten 1852, 33, 377–398. [Google Scholar] [CrossRef]
- Cowell, P.H.; Crommelin, A.C.D. The Orbit of Jupiter’s Eighth Satellite. Mon. Not. R. Astron. Soc. 1908, 68, 576. [Google Scholar] [CrossRef]
- Cowell, P.H.; Crommelin, A.C.D. Investigation of the Motion of Halley’s Comet From 1759 to 1910. Greenwich Obs. Astron. Magn. Meteorol. Made R. Obs. Ser. 2 1910, 71, 1–84. [Google Scholar]
- Battin, R.H. An Introduction to the Mathematics and Methods of Astrodynamics; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1999. [Google Scholar]
- Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization. J. Für Die Reine Und Angew. Math. (Crelles J.) 1965, 1965, 204–219. [Google Scholar] [CrossRef]
- Stiefel, E.L.; Scheifele, G. Linear and Regular Celestial Mechanics, 1st ed.; Grundlehren der Mathematischen Wissenschaften Series; Springer: Berlin/Heidelberg, Germany, 1971; Volume 174, pp. X, 306. ISBN 978-3-642-65029-1. [Google Scholar]
- Ferrandiz, J.M. A new set of canonical variables for orbit calculations. In ESA Proceedings of the Second International Symposium on Spacecraft Flight Dynamics; SEE N87-25354 19-18; ESA Special Publication: Darmstadt, Germany, 1986; Volume 255, pp. 361–364. [Google Scholar]
- Ferrándiz, J.M. A general canonical transformation increasing the number of variables with application to the two-body problem. Celest. Mech. 1988, 41, 343–357. [Google Scholar] [CrossRef]
- Tisserand, F. Traité de Mécanique Céleste. Tome I: Perturbations des Planètes d’aprés la Méthode de la Variation des Constantes Arbitraries; Gauthier-Villars et Fils: Paris, France, 1889. [Google Scholar]
- Roy, A.E. Orbital Motion, 4th ed.; Institute of Physics Publishing: Bristol, UK, 2005; pp. XVIII+526. [Google Scholar]
- Arsenault, J.L.; Ford, K.C.; Koskela, P.E. Orbit determination using analytic partial derivatives of perturbed motion. AIAA J. 1970, 8, 4–12. [Google Scholar] [CrossRef]
- Broucke, R.A.; Cefola, P.J. On the Equinoctial Orbit Elements. Celest. Mech. 1972, 5, 303–310. [Google Scholar] [CrossRef]
- Hintz, G. Survey of Orbit Element Sets. J. Guid. Control Dyn. 2008, 31, 785–790. [Google Scholar] [CrossRef]
- Strömgren, B. Formeln zur genaeherten Stoerungsrechnung in Bahnelementen. Angewandt auf die Planeten 633 Zelima, 956 [1921 IW], 979 Ilsewa, 1035 Amata und 1049 [1925RB]. Publ. Og Mindre Meddeler Fra Kobenhavns Obs. 1929, 65, 1–26. [Google Scholar]
- Milankovitch, M. Kanon der Erdbestrahlung und Seine Anwendung auf das Eiszeitenproblem; Mechanics of Space Flight; Königlich Serbische Akademie: Belgrade, Serbia, 1941; English Translation: Canon of Insolation and the Ice-Age Problem. Israel Program for Scientific Translations, Jerusalem, 1969. [Google Scholar]
- Herrick, S. Icarus and the variation of parameters. Astron. J. 1953, 58, 156–164. [Google Scholar] [CrossRef]
- Musen, P. Special perturbations of the vectorial elements. Astron. J. 1954, 59, 262–267. [Google Scholar] [CrossRef]
- Herget, P. On the variation of arbitrary vectorial constants. Astron. J. 1962, 67, 16. [Google Scholar] [CrossRef]
- Allan, R.R. Satellite orbit perturbations due to radiation pressure and luni-solar forces. Q. J. Mech. Appl. Math. 1962, 15, 283–301. [Google Scholar] [CrossRef]
- Allan, R.R.; Ward, G.N. Planetary equations in terms of vectorial elements. Proc. Camb. Philos. Soc. 1963, 59, 669. [Google Scholar] [CrossRef]
- Roy, A.E.; Moran, P.E. Studies in the Application of Recurrence Relations to Special Perturbation Methods. III. Non-Singular Differential Equations for Special Perturbations. Celest. Mech. 1973, 7, 236–255. [Google Scholar] [CrossRef]
- Deprit, A. Ideal elements for perturbed Keplerian motions. J. Res. Natl. Bur. Stand. 1975, 79, 1–15. [Google Scholar] [CrossRef]
- Deprit, A. Dynamics of orbiting dust under radiation pressure. In The Big-Bang and Georges Lemaître; Berger, A., Ed.; Springer: Dordrecht, The Netherlands, 1984; pp. 151–180. [Google Scholar] [CrossRef]
- Breiter, S.; Ratajczak, R. Vectorial elements for the Galactic disc tide effects in cometary motion. Mon. Not. R. Astron. Soc. 2005, 364, 1222–1228. [Google Scholar] [CrossRef]
- Correia, A.C.M.; Laskar, J.; Farago, F.; Boué, G. Tidal evolution of hierarchical and inclined systems. Celest. Mech. Dyn. Astron. 2011, 111, 105–130. [Google Scholar] [CrossRef]
- Katz, B.; Dong, S.; Malhotra, R. Long-Term Cycling of Kozai-Lidov Cycles: Extreme Eccentricities and Inclinations Excited by a Distant Eccentric Perturber. Phys. Rev. Lett. 2011, 107, 181101. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.J.; Scheeres, D.J. On the Milankovitch orbital elements for perturbed Keplerian motion. Celest. Mech. Dyn. Astron. 2014, 118, 197–220. [Google Scholar] [CrossRef]
- Lara, M.; Rosengren, A.J.; Fantino, E. Non-singular recursion formulas for third-body perturbations in mean vectorial elements. Astron. Astrophys. 2020, 634, 1–9. [Google Scholar] [CrossRef]
- San-Juan, J.F.; López, R.; Lara, M. Vectorial formulation for the propagation of average dynamics under gravitational effects (IAC-23,C1,8,3,x78887). In Proceedings of the 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2–6 October 2023; pp. 1–10. [Google Scholar]
- Fehlberg, E. Classical Fifth-, Sixth-, Seventh- and Eighth-Order Runge-Kutta Formulas with Stepsize Control; NASA Technical Report NASA TR R-287; Marshall Space Flight Center: Huntsville, AL, USA, 1968. [Google Scholar]
- Shampine, L.F.; Gordon, M.K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem; Freeman and Co.: San Francisco, CA, USA, 1975; p. 318. [Google Scholar]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar] [CrossRef]
- Hairer, E.; Nørset, S.P.; Wanner, G. Solving Ordinary Differential Equations I. Non-Stiff Problems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Sperling, H. Computation of Keplerian Conic Sections. ARS J. 1961, 31, 660–661. [Google Scholar] [CrossRef]
- Burdet, C.A. Theory of Kepler motion: The general perturbed two body problem. Z. Angew. Math. Und Phys. 1968, 19, 345–368. [Google Scholar] [CrossRef]
- Nacozy, P. The Intermediate Anomaly. Celest. Mech. 1977, 16, 309–313. [Google Scholar] [CrossRef]
- Kamel, A. New nonsingular forms of perturbed satellite equations of motion. J. Guid. Control Dyn. 1983, 6, 387–392. [Google Scholar] [CrossRef]
- Szebehely, V.; Bond, V. Transformations of the Perturbed Two-Body Problem to Unperturbed Harmonic Oscillators. Celest. Mech. 1983, 30, 59–69. [Google Scholar] [CrossRef]
- Sharaf, M.A.; Awad, M.E.S.; Najmuldeen, S.A.S.A. Motion of artificial satellites in the set of Eulerian redundant parameters (III). Earth Moon Planets 1992, 56, 141–164. [Google Scholar] [CrossRef]
- Fukushima, T. New Two-Body Regularization. Astron. J. 2007, 133, 1–10. [Google Scholar] [CrossRef]
- Ferrer, S.; Lara, M. Families of Canonical Transformations by Hamilton-Jacobi-Poincaré Equation. Application to Rotational and Orbital Motion. J. Geom. Mech. 2010, 2, 223–241. [Google Scholar] [CrossRef]
- Roa, J. Regularization in Orbital Mechanics: Theory and Practice; De Gruyter Studies in Mathematical Physics Series; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; Volume 42. [Google Scholar] [CrossRef]
- Stiefel, E. Remarks on Numerical Integration of Keplerian Orbits. Celest. Mech. 1970, 2, 274–281. [Google Scholar] [CrossRef]
- Urrutxua, H.; Peláez, J.; Bombardelli, C. Impact of the integration stop-condition on the accuracy of regularized orbit formulations (AAS 16-353). Adv. Astronaut. Sci. 2016, 158, 2503–2516. [Google Scholar]
- Lara, M. Note on the analytical integration of circumterrestrial orbits. Adv. Space Res. 2022, 69, 4169–4178. [Google Scholar] [CrossRef]
- Fukushima, T. Efficient Orbit Integration by Manifold Correction Methods. Ann. N. Y. Acad. Sci. 2005, 1065, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed.; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 31, pp. XVI, 644. [Google Scholar] [CrossRef]
- Fukushima, T. Further Simplification of the Manifold Correction Method for Orbit Integration. Astron. J. 2004, 128, 1446–1454. [Google Scholar] [CrossRef]
- Barrio, R.; Serrano, S. Performance of perturbation methods on orbit prediction. Math. Comput. Model. 2008, 48, 594–600. [Google Scholar] [CrossRef]
- Shefer, V.A. Application of KS-transformation in the problem of investigation of the motion of unusual minor planets and comets. Celest. Mech. 1990, 49, 197–207. [Google Scholar] [CrossRef]
- Ferrandiz, J.M.; Sansaturio, M.E.; Pojman, J.R. Increased Accuracy of Computations in the Main Satellite Problem through Linearization Methods. Celest. Mech. Dyn. Astron. 1992, 53, 347–363. [Google Scholar] [CrossRef]
- Martín, P.; Ferrándiz, J.M. Behaviour of the SMF Method for the Numerical Integration of Satellite Orbits. Celest. Mech. Dyn. Astron. 1995, 63, 29–40. [Google Scholar] [CrossRef]
- Hansen, P.A. Auseinandersetzung einer zweckmässigen Methode zur Berechnung der absoluten Störungen der kleinen Planeten. Erste Abhandlung. Abh. Der K. Sachs. Ges. Der Wiss. 1857, 5, 41–218. [Google Scholar]
- Musen, P. Application of Hansen’s theory to the motion of an artificial satellite in the gravitational field of the Earth. J. Geophys. Res. 1959, 64, 2271–2279. [Google Scholar] [CrossRef]
- Broucke, R.; Lass, H.; Ananda, M. Redundant Variables in Celestial Mechanics. Astron. Astrophys. 1971, 13, 390–398. [Google Scholar]
- Deprit, A. Ideal Frames for Perturbed Keplerian Motions. Celest. Mech. 1976, 13, 253–263. [Google Scholar] [CrossRef]
- Roa, J.; Kasdin, N.J. Alternative Set of Nonsingular Quaternionic Orbital Elements. J. Guid. Control Dyn. 2017, 40, 2737–2751. [Google Scholar] [CrossRef]
- Breiter, S.; Langner, K. The Lissajous-Kustaanheimo-Stiefel transformation. Celest. Mech. Dyn. Astron. 2019, 131, 9. [Google Scholar] [CrossRef]
- Amato, D.; Bombardelli, C.; Baù, G.; Morand, V.; Rosengren, A.J. Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods. Celest. Mech. Dyn. Astron. 2019, 131, 21. [Google Scholar] [CrossRef]
- Pirovano, L. Cataloguing Space Debris: Methods for Optical Data Association. Ph.D. Thesis, Surrey Space Centre, Department of Electrical and Electronic Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK, 2020. [Google Scholar]
- Shuster, M. A Survey of Attitude Representations. J. Astronaut. Sci. 1993, 41, 439–517. [Google Scholar]
- Abad, A.; Palacios, M.; Sein-Echaluce, M. An efficient formulation for numerical orbit computation. In ESA, Spacecraft Flight Dynamics; Hunt, J.J., Ed.; ESA Special Publication: Darmstadt, Germany, 1991; Volume 326, pp. 65–70. [Google Scholar]
- Palacios, M.; Calvo, C. Ideal frames and regularization in numerical orbit computation. J. Astronaut. Sci. 1996, 44, 63–77. [Google Scholar]
- Calvo, C. Integración Numérica de Problemas Orbitales en Sistemas de Referencia Ideales. Aplicaciones a Satélites Artificiales. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2000. [Google Scholar]
- Baù, G.; Bombardelli, C.; Peláez, J. A new set of integrals of motion to propagate the perturbed two-body problem. Celest. Mech. Dyn. Astron. 2013, 116, 53–78. [Google Scholar] [CrossRef]
- Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J. DROMO propagator revisited. Celest. Mech. Dyn. Astron. 2016, 124, 1–31. [Google Scholar] [CrossRef]
- Sundman, K.F. Mémoire sur le problème des trois corps. Acta Math. 1913, 36, 105–179. [Google Scholar] [CrossRef]
- Szebehely, V. Theory of Orbits. The Restricted Problem of Three Bodies; Academic Press Inc.: New York, NY, USA; London, UK, 1967; pp. 1–668. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sur la résolution qualitative du problème restreint des trois corps. Acta Math. 1906, 30, 305–327. [Google Scholar] [CrossRef]
- Bohlin, K. Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps. Bull. Astron. Ser. I 1911, 28, 113–119. [Google Scholar] [CrossRef]
- Brown, E.W.; Shook, C.A. Planetary Theory; Cambridge University Press: Cambridge, UK, 1933. [Google Scholar]
- Deprit, A.; Elipe, A.; Ferrer, S. Linearization: Laplace vs. Stiefel. Celest. Mech. Dyn. Astron. 1994, 58, 151–201. [Google Scholar] [CrossRef]
- Velez, C.E. Notions of Analytic Vs Numerical Stability as Applied to the Numerical Calculation of Orbits. Celest. Mech. 1974, 10, 405–422. [Google Scholar] [CrossRef]
- Tapley, B.D.; Szebehely, V.G. The Regularization of Optimal Trajectories. JPL Space Programs Summ. 1967, 4, 5–9. Available online: https://ntrs.nasa.gov/api/citations/19670030904/downloads/19670030904.pdf (accessed on 24 September 2023).
- Tapley, B.D.; Szebehely, V.; Lewallen, J.M. Trajectory optimization using regularized variables. AIAA J. 1969, 7, 1010–1017. [Google Scholar] [CrossRef]
- McGehee, R. Triple collision in the collinear three-body problem. Invent. Math. 1974, 27, 191–227. [Google Scholar] [CrossRef]
- Scheifele, G. On Nonclassical Canonical Systems. Celest. Mech. 1970, 2, 296–310. [Google Scholar] [CrossRef]
- Ferrandiz, J.M.; Ferrer, S. A New Integrated, General Time Transformation in the Kepler Problem. Bull. Astron. Inst. Czechoslov. 1986, 37, 226. [Google Scholar]
- Ferrándiz, J.M.; Ferrer, S.; Sein-Echaluce, M.L. Generalized Elliptic Anomalies. Celest. Mech. 1987, 40, 315–328. [Google Scholar] [CrossRef]
- Scheifele, G.; Graf, O. Analytical satellite theories based on a new set of canonical elements. In Proceedings of the Mechanics and Control of Flight Conference, Anaheim, CA, USA, 5–9 August 1974; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1974; pp. 1–20. [Google Scholar] [CrossRef]
- Cohen, C.J.; Hubbard, E.C. A nonsingular set of orbit elements. Astron. J. 1962, 67, 10–15. [Google Scholar] [CrossRef]
- Lara, M. Note on the ideal frame formulation. Celest. Mech. Dyn. Astron. 2017, 129, 137–151. [Google Scholar] [CrossRef]
- Urrutxua, H. High Fidelity Models for Near-Earth Object Dynamics. Ph.D. Thesis, Escuela Técnica Superior de Ingenieros Aeronáuticos, Plaza del Cardenal Cisneros, Madrid, Spain, 2015. [Google Scholar]
- Nacozy, P.E. Time elements. In Proceedings of the Satellite Dynamics Symposium, Sao Paulo, Brazil, 19–21 June 1974; Giacaglia, G.E.O., Stickland, A.C., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1975; pp. 16–26. [Google Scholar] [CrossRef]
- Nacozy, P.E. Time Elements in Keplerian Orbital Elements. Celest. Mech. 1981, 23, 173–198. [Google Scholar] [CrossRef]
- Arakida, H.; Fukushima, T. Long-Term Integration Error of Kustaanheimo-Stiefel Regularized Orbital Motion. II. Method of Variation of Parameters. Astron. J. 2001, 121, 1764–1767. [Google Scholar] [CrossRef]
- Scheifele, G. Généralisation des éléments de Delaunay en mécanique céleste. Application au mouvement d’un satellite artificiel. Acad. Des Sci. Paris C. R. Ser. B Sci. Phys. 1970, 271, 729–732. [Google Scholar]
- Samway, R.C. A Special Perturbation Method Based on Canonical Delaunay-Similar Elements with the True Anomaly as the Independent Variable. Ph.D. Thesis, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA, 1973. [Google Scholar]
- Scheifele, G. An analytical singularity-free orbit predictor for near-earth satellites. In Proceedings of the International Symposium on Spacecraft Flight Dynamics, Darmstadt, Germany, 18–22 May 1981; ESA Special Publication: Darmstadt, Germany, 1981; Volume 160, pp. 299–305. [Google Scholar]
- Baù, G.; Bombardelli, C. Time Elements for Enhanced Performance of the Dromo Orbit Propagator. Astron. J. 2014, 148, 43. [Google Scholar] [CrossRef]
- Vitins, M. Keplerian Motion and Gyration. Celest. Mech. 1978, 17, 173–192. [Google Scholar] [CrossRef]
- Deprit, A. The elimination of the parallax in satellite theory. Celest. Mech. 1981, 24, 111–153. [Google Scholar] [CrossRef]
- Floría, L. Canonical elements and Keplerian-like solutions for intermediary orbits of satellites of an oblate planet. Celest. Mech. Dyn. Astron. 1993, 57, 203–223. [Google Scholar] [CrossRef]
- Lara, M. Analytical and Semianalytical Propagation of Space Orbits: The Role of Polar-Nodal Variables. In Astrodynamics Network AstroNet-II. Astrophysics and Space Science Proceedings; Gómez, G., Masdemont, J.J., Eds.; Springer: Cham, Switzerland, 2016; Volume 44, pp. 151–166. [Google Scholar] [CrossRef]
- Cayley, A. On Hansen’s lunar theory. In Collected Mathematical Works; Cambridge University Press: London, UK, 1890; Volume III, pp. 13–24. [Google Scholar]
- Brown, E.W. An Introductory Treatise on the Lunar Theory; The University Press: Cambridge, UK, 1896. [Google Scholar]
- Milnor, J. On the Geometry of the Kepler Problem. Am. Math. Mon. 1983, 90, 353–365. [Google Scholar] [CrossRef]
- Eades, J.B., Jr. Orbit Information Derived from Its Hodograph; Technical Memorandum NASA-TM-X-63301; Goddard Space Flight Center: Greenbelt, MD, USA, 1968. [Google Scholar]
- Altman, S.P. A Unified State Model of Orbital Trajectory and Attitude Dynamics. Celest. Mech. 1972, 6, 425–446. [Google Scholar] [CrossRef]
- Chodas, P. Application of the Extended Kalman Filter to Several Formulations of Orbit Determination; Technical Note 224; University of Toronto Institute for Aerospace Studies: Toronto, ON, Canada, 1981. [Google Scholar]
- Vittaldev, V.; Mooij, E.; Naeije, M.C. Unified State Model theory and application in Astrodynamics. Celest. Mech. Dyn. Astron. 2012, 112, 253–282. [Google Scholar] [CrossRef]
- Garofalo, A.M. New set of variables for astronomical problems. Astron. J. 1960, 65, 117–121. [Google Scholar] [CrossRef]
- Alfriend, K.T.; Coffey, S.L. Elimination of the perigee in the satellite problem. Celest. Mech. 1984, 32, 163–172. [Google Scholar] [CrossRef]
- Lara, M.; San-Juan, J.F.; López-Ochoa, L.M. Proper Averaging Via Parallax Elimination (AAS 13-722). Adv. Astronaut. Sci. 2014, 150, 315–331. [Google Scholar]
- Leimanis, E. The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point; Springer Tracts in Natural Philosophy; Springer: Berlin/Heidelberg, Germany, 1965. [Google Scholar]
- Leubner, C. Correcting a widespread error concerning the angular velocity of a rotating rigid body. Am. J. Phys. 1981, 49, 232–234. [Google Scholar] [CrossRef]
- Peláez, J.; Hedo, J.M.; Rodríguez de Andrés, P. A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron. 2007, 97, 131–150. [Google Scholar] [CrossRef]
- Deprit, A.; Rom, A. The Main Problem of Artificial Satellite Theory for Small and Moderate Eccentricities. Celest. Mech. 1970, 2, 166–206. [Google Scholar] [CrossRef]
- Sharaf, M.A.; Awad, M.E.S.; Najmuldeen, S.A.S.A. The Motion of Artificial Satellites in the Set of Eulerian Redundant Parameters. Earth Moon Planets 1991, 55, 21–44. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y. New Method for Extracting the Quaternion from a Rotation Matrix. J. Guid. Control Dyn. 2000, 23, 1085–1087. [Google Scholar] [CrossRef]
- Danby, J.M.A. Fundamentals of Celestial Mechanics, 2nd ed.; Willmann-Bell: Richmond, VA, USA, 1992. [Google Scholar]
- Baumgarte, J. A New Time Element for A General Time Transformation. Celest. Mech. 1976, 14, 121–127. [Google Scholar] [CrossRef]
- Baù, G.; Bombardelli, C.; Peláez, J.; Lorenzini, E. Non-singular orbital elements for special perturbations in the two-body problem. Mon. Not. R. Astron. Soc. 2015, 454, 2890–2908. [Google Scholar] [CrossRef]
- Lara, M. Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction. The Method of Lie Transforms, 1st ed.; De Gruyter Studies in Mathematical Physics; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; Volume 54, pp. XV, 377. [Google Scholar] [CrossRef]
- Alfriend, K.T.; Dasenbrock, R.; Pickard, H.; Deprit, A. The extended phase space formulation of the Vinti problem. Celest. Mech. 1977, 16, 441–458. [Google Scholar] [CrossRef]
- Kaptanoǧlu, S. Weakly canonical transformations and the path integral quantization. Phys. Lett. B 1981, 98, 77–82. [Google Scholar] [CrossRef]
- Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, 3rd ed.; Addison-Wesley: New York, NY, USA, 2001. [Google Scholar]
- Nacozy, P.; Scheifele, G. Investigation of Highly Efficient Satellite Solution Methods; Technical Report NASA-CR-138593; Goddard Space Flight Center: Greenbelt, MD, USA, 1974. [Google Scholar]
- Bond, V.R.; Janin, G. Canonical Orbital Elements in Terms of an Arbitrary Independent Variable. Celest. Mech. 1981, 23, 159–172. [Google Scholar] [CrossRef]
- Floria, L.; Caballero, R. A universal approach to the intermediate anomaly of Keplerian motion. J. Phys. A Math. Gen. 1995, 28, 6395–6404. [Google Scholar] [CrossRef]
- Andoyer, H. Sur l’anomalie excentrique et l’anomalie vraie comme éléments canoniques du mouvement eliptique, d’après MM. T. Levi-Civita et G.-W. Hill. Bull. Astron. Ser. I 1913, 30, 425–429. [Google Scholar] [CrossRef]
- Deprit, A. A Note Concerning the TR-Transformation. Celest. Mech. 1981, 23, 299–305. [Google Scholar] [CrossRef]
- Bond, V.; Broucke, R. Analytical Satellite Theory in Extended Phase Space. Celest. Mech. 1980, 21, 357–360. [Google Scholar] [CrossRef]
- Hill, G.W. Motion of a system of material points under the action of gravitation. Astron. J. 1913, 27, 171–182. [Google Scholar] [CrossRef]
- Flury, W.; Janin, G. Accurate Integration of Geostationary Orbits with Burdet’s Focal Elements. Astrophys. Space Sci. 1975, 36, 495–503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara, M.; Urrutxua, H. Revisiting Hansen’s Ideal Frame Propagation with Special Perturbations—1: Basic Algorithms for Osculating Elements. Universe 2023, 9, 470. https://doi.org/10.3390/universe9110470
Lara M, Urrutxua H. Revisiting Hansen’s Ideal Frame Propagation with Special Perturbations—1: Basic Algorithms for Osculating Elements. Universe. 2023; 9(11):470. https://doi.org/10.3390/universe9110470
Chicago/Turabian StyleLara, Martin, and Hodei Urrutxua. 2023. "Revisiting Hansen’s Ideal Frame Propagation with Special Perturbations—1: Basic Algorithms for Osculating Elements" Universe 9, no. 11: 470. https://doi.org/10.3390/universe9110470
APA StyleLara, M., & Urrutxua, H. (2023). Revisiting Hansen’s Ideal Frame Propagation with Special Perturbations—1: Basic Algorithms for Osculating Elements. Universe, 9(11), 470. https://doi.org/10.3390/universe9110470