The Laplace Transform of Quantum Gravity
Abstract
:1. Introduction
2. Particles and Schild Strings
3. Quantum Gravity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
1 | |
2 |
References
- Kiefer, C. Quantum Gravity, 2nd ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Carlip, S.; Chiou, D.W.; Ni, W.T.; Woodard, R. Quantum Gravity: A Brief History of Ideas and Some Prospects. Int. J. Mod. Phys. D 2015, 24, 1530028. [Google Scholar] [CrossRef] [Green Version]
- Stachel, J. The Early History of Quantum Gravity (1916–1940). In Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara; Iyer, B.R., Bhawal, B., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 525–534. [Google Scholar] [CrossRef]
- Addazi, A.; Alvarez-Muniz, J.; Batista, R.A.; Amelino-Camelia, G.; Antonelli, V.; Arzano, M.; Asorey, M.; Atteia, J.-L.; Bahamonde, S.; Bajardi, F.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. arXiv 2021, arXiv:2111.05659. [Google Scholar]
- ’t Hooft, G. Quantum gravity as a dissipative deterministic system. Class. Quant. Grav. 1999, 16, 3263–3279. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Black holes and the second law. Lett. Nuovo C. 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 2000, 323, 183–386. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A Status report. Class. Quant. Grav. 2004, 21, R53. [Google Scholar] [CrossRef]
- Rovelli, C. Loop Quantum Gravity. Living Rev. Relativ. 2008, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoi, V.N. Q deformation of Poincare algebra. Phys. Lett. B 1991, 264, 331–338. [Google Scholar] [CrossRef]
- Ballesteros, A.; Gubitosi, G.; Gutiérrez-Sagredo, I.; Herranz, F.J. Curved momentum spaces from quantum groups with cosmological constant. Phys. Lett. B 2017, 773, 47–53. [Google Scholar] [CrossRef]
- Addazi, A.; Marcianò, A. A modern guide to θ-Poincaré. Int. J. Mod. Phys. A 2020, 35, 2042003. [Google Scholar] [CrossRef]
- Eguchi, T. New Approach to the Quantized String Theory. Phys. Rev. Lett. 1980, 44, 126. [Google Scholar] [CrossRef]
- Schild, A. Classical Null Strings. Phys. Rev. D 1977, 16, 1722. [Google Scholar] [CrossRef]
- Gamboa, J.; Ruiz-Altaba, M. Path integral approach to membranes. Phys. Lett. B 1988, 205, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, J.; Ramirez, C.; Ruiz-Altaba, M. Field Theory of Null Strings and p-branes. Phys. Lett. B 1989, 231, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Pilati, M. Strong Coupling Quantum Gravity. 1. Solution in a Particular Gauge. Phys. Rev. D 1982, 26, 2645. [Google Scholar] [CrossRef]
- Henneaux, M.; Pilati, M.; Teitelboim, C. Explicit Solution for the Zero Signature (Strong Coupling) Limit of the Propagation Amplitude in Quantum Gravity. Phys. Lett. B 1982, 110, 123–128. [Google Scholar] [CrossRef]
- Gamboa, J. A Model of two-dimensional quantum gravity in the strong coupling regime. Phys. Rev. Lett. 1995, 74, 1900–1903. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, J. On the initial singularity problem in two-dimensional quantum cosmology. Phys. Rev. D 1996, 53, 6991–6994. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, J.; Mendez, F. Quantum gravity at very high-energies. Nucl. Phys. B 2001, 600, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P. Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev. 1950, 80, 440–457. [Google Scholar] [CrossRef]
- Nambu, Y. The use of the Proper Time in Quantum Electrodynamics. Prog. Theor. Phys. 1950, 5, 82–94. [Google Scholar] [CrossRef]
- Schwinger, J.S. The Theory of quantized fields. 1. Phys. Rev. 1951, 82, 914–927. [Google Scholar] [CrossRef]
- Ogielski, A.T. Comments on the ’Planar Time’ Dynamics of Strings. Phys. Rev. D 1980, 22, 2407. [Google Scholar] [CrossRef]
- Teitelboim, C. Quantum Mechanics of the Gravitational Field. Phys. Rev. D 1982, 25, 3159. [Google Scholar] [CrossRef]
- Kalb, M.; Ramond, P. Classical direct interstring action. Phys. Rev. D 1974, 9, 2273–2284. [Google Scholar] [CrossRef]
- Moser, J. On the volume elements on a manifold. Trans. Am. Math. Soc. 1969, 120, 286–294. [Google Scholar] [CrossRef]
- Hosotani, Y. Hamilton-Jacobi Formalism and Wave Equations for Strings. Phys. Rev. Lett. 1985, 55, 1719. [Google Scholar] [CrossRef]
- Luscher, M. The Area Law as a Consequence of the Loop Wave Equation. Phys. Lett. B 1980, 90, 277–279. [Google Scholar] [CrossRef]
- Luscher, M.; Symanzik, K.; Weisz, P. Anomalies of the Free Loop Wave Equation in the WKB Approximation. Nucl. Phys. B 1980, 173, 365. [Google Scholar] [CrossRef]
- Alvarez, O. Theory of Strings with Boundaries: Fluctuations, Topology, and Quantum Geometry. Nucl. Phys. B 1983, 216, 125–184. [Google Scholar] [CrossRef]
- Migdal, A.A. Loop Equations and 1/N Expansion. Phys. Rep. 1983, 102, 199–290. [Google Scholar] [CrossRef]
- Vassilevich, D.V. Heat kernel expansion: User’s manual. Phys. Rep. 2003, 388, 279–360. [Google Scholar] [CrossRef] [Green Version]
- Pilati, M. Strong coupling quantum gravity. 2. Solution without gauge fixing. Phys. Rev. D 1983, 28, 729. [Google Scholar] [CrossRef]
- Gamboa, J.; MacKenzie, R.; Méndez, F. Gravitons in the Strong-Coupling Regime. arXiv 2020, arXiv:2010.12966. [Google Scholar]
- Brax, P.; Rizzo, L.A.; Valageas, P. Ultralocal models of modified gravity without kinetic term. Phys. Rev. D 2016, 94, 044027. [Google Scholar] [CrossRef] [Green Version]
- Lévy-Leblond, J.M. Une nouvelle limite non-relativiste du groupe de Poincaré. Ann. Phys. Theor. 1965, 3, 1–12. [Google Scholar]
- Bacry, H.; Levy-Leblond, J. Possible kinematics. J. Math. Phys. 1968, 9, 1605–1614. [Google Scholar] [CrossRef]
- ’t Hooft, G. Under the Spell of the Gauge Principle, 1st ed.; World Scientific: London, UK, 1994. [Google Scholar]
- Green, R.E.; Shiohama, K. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. Trans. Am. Math. Soc. 1979, 255, 403. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa, J.; Méndez, F.; Tapia-Arellano, N. The Laplace Transform of Quantum Gravity. Universe 2022, 8, 116. https://doi.org/10.3390/universe8020116
Gamboa J, Méndez F, Tapia-Arellano N. The Laplace Transform of Quantum Gravity. Universe. 2022; 8(2):116. https://doi.org/10.3390/universe8020116
Chicago/Turabian StyleGamboa, Jorge, Fernando Méndez, and Natalia Tapia-Arellano. 2022. "The Laplace Transform of Quantum Gravity" Universe 8, no. 2: 116. https://doi.org/10.3390/universe8020116
APA StyleGamboa, J., Méndez, F., & Tapia-Arellano, N. (2022). The Laplace Transform of Quantum Gravity. Universe, 8(2), 116. https://doi.org/10.3390/universe8020116