Black Hole Surface Gravity in Doubly Special Relativity Geometries
Abstract
:1. Introduction
2. Cotangent Bundle in a Nutshell
2.1. Main Properties of the Geometry in the Cotangent Bundle
2.2. Relativistic Deformed Kinematics in Curves Spacetimes
3. Killing Equation in the Cotangent Bundle
3.1. Killing Equation Revisited
3.2. Killing Equation in a Conformally Flat Metric
4. Main Notions of Surface Gravity
4.1. Peeling off Properties of Null Geodesics
4.2. Inaffinity of Null Geodesics
5. Killing Equation and Selection of Momentum Basis
6. Different Notions of Surface Gravity
6.1. Null Normal Derivative
6.2. Generator
6.3. Wick Rotation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | |
2 | |
3 | As we mentioned above, due to the form of the metric (16), the Casimir is a function of . This means that, on the one hand there is not any modification of the dispersion relation for massless particles, and on the other, the modification of massive particles is of the order of , being m the mass of the particle, which is completely negligible. Therefore, in the ultraviolet regime in which particles escape from the horizon of the black hole, and then masses can be neglected, massive particles see the same horizon. This is a very important check of consistency since, as commented in the introduction, otherwise the black hole would be a perpetuum mobile [52]. |
References
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2013, 2, 062. [Google Scholar] [CrossRef] [Green Version]
- Gyongyosi, L. A Statistical Model of Information Evaporation of Perfectly Reflecting Black Holes. Int. J. Quant. Inf. 2014, 12, 1560025. [Google Scholar] [CrossRef] [Green Version]
- Gyongyosi, L.; Imre, S. Theory of Quantum Gravity Information Processing. Quantum Eng. 2014, 1, e23. [Google Scholar] [CrossRef] [Green Version]
- Gyongyosi, L.; Imre, S.; Nguyen, H.V. A Survey on Quantum Channel Capacities. IEEE Commun. Surv. Tutor. 2018, 20, 1149–1205. [Google Scholar] [CrossRef]
- Gyongyosi, L. Correlation measure equivalence in dynamic causal structures of quantum gravity. Quantum Eng. 2020, 2, e30. [Google Scholar] [CrossRef] [Green Version]
- Gyongyosi, L. Energy transfer and thermodynamics of quantum gravity computation. Chaos Solitons Fractals X 2020, 5, 100050. [Google Scholar] [CrossRef]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quant. Grav. 2011, 28, 153001. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O. A Brief review of ’little string theories’. Class. Quant. Grav. 2000, 17, 929–938. [Google Scholar] [CrossRef]
- Dienes, K.R. String theory and the path to unification: A Review of recent developments. Phys. Rept. 1997, 287, 447–525. [Google Scholar] [CrossRef] [Green Version]
- Sahlmann, H. Loop Quantum Gravity—A Short Review; Foundations of Space and Time: Reflections on Quantum Gravity: Cape Town, South Africa, 2010; pp. 185–210. [Google Scholar]
- Dupuis, M.; Ryan, J.P.; Speziale, S. Discrete gravity models and Loop Quantum Gravity: A short review. SIGMA 2012, 8, 052. [Google Scholar] [CrossRef] [Green Version]
- Loll, R. Quantum gravity from causal dynamical triangulations: A review. Class. Quantum Gravity 2019, 37, 013002. [Google Scholar] [CrossRef] [Green Version]
- Wallden, P. Causal Sets Dynamics: Review & Outlook. J. Phys. Conf. Ser. 2013, 453, 012023. [Google Scholar] [CrossRef] [Green Version]
- Wallden, P. Causal Sets: Quantum Gravity from a Fundamentally Discrete Spacetime. J. Phys. Conf. Ser. 2010, 222, 012053. [Google Scholar] [CrossRef] [Green Version]
- Henson, J. The Causal set approach to quantum gravity. In Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 393–413. [Google Scholar]
- Gross, D.J.; Mende, P.F. String Theory Beyond the Planck Scale. Nucl. Phys. B 1988, 303, 407–454. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can Space-Time Be Probed Below the String Size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Belenchia, A.; Benincasa, D.M.T.; Liberati, S.; Marin, F.; Marino, F.; Ortolan, A. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators. Phys. Rev. Lett. 2016, 116, 161303. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Rel. 2013, 16, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowiec, A.; Pachol, A. Classical basis for kappa-Poincare algebra and doubly special relativity theories. J. Phys. A 2010, 43, 045203. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from momentum space geometry. Phys. Rev. D 2019, 100, 104031. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoi, V.N. Q deformation of Poincare algebra. Phys. Lett. B 1991, 264, 331–338. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H.; Ruhl, W. From kappa Poincare algebra to kappa Lorentz quasigroup: A Deformation of relativistic symmetry. Phys. Lett. B 1993, 313, 357–366. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H. New quantum Poincare algebra and k deformed field theory. Phys. Lett. B 1992, 293, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Nowicki, A. Doubly special relativity versus kappa deformation of relativistic kinematics. Int. J. Mod. Phys. A 2003, 18, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Battisti, M.V.; Meljanac, S. Scalar Field Theory on Non-commutative Snyder Space-Time. Phys. Rev. D 2010, 82, 024028. [Google Scholar] [CrossRef] [Green Version]
- Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M. Lie algebraic deformations of Minkowski space with Poincare algebra. arXiv 2009, arXiv:0909.1706. [Google Scholar]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. D 2011, 84, 084010. [Google Scholar] [CrossRef] [Green Version]
- Lobo, I.P.; Palmisano, G. Geometric interpretation of Planck-scale-deformed co-products. Int. J. Mod. Phys. Conf. Ser. 2016, 41, 1660126. [Google Scholar] [CrossRef] [Green Version]
- Relancio, J.J.; Liberati, S. Phenomenological consequences of a geometry in the cotangent bundle. Phys. Rev. D 2020, 101, 064062. [Google Scholar] [CrossRef] [Green Version]
- Girelli, F.; Liberati, S.; Sindoni, L. Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 2007, 75, 064015. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G.; Barcaroli, L.; Gubitosi, G.; Liberati, S.; Loret, N. Realization of doubly special relativistic symmetries in Finsler geometries. Phys. Rev. D 2014, 90, 125030. [Google Scholar] [CrossRef] [Green Version]
- Lobo, I.P.; Loret, N.; Nettel, F. Investigation of Finsler geometry as a generalization to curved spacetime of Planck-scale-deformed relativity in the de Sitter case. Phys. Rev. D 2017, 95, 046015. [Google Scholar] [CrossRef] [Green Version]
- Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; Loret, N.; Pfeifer, C. Hamilton geometry: Phase space geometry from modified dispersion relations. Phys. Rev. D 2015, 92, 084053. [Google Scholar] [CrossRef]
- Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; Loret, N.; Pfeifer, C. Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes. Phys. Rev. D 2017, 95, 024036. [Google Scholar] [CrossRef]
- Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; Loret, N.; Pfeifer, C. Curved spacetimes with local κ-Poincaré dispersion relation. Phys. Rev. D 2017, 96, 084010. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, C.; Liberati, S.; Visser, M. Refringence, field theory, and normal modes. Class. Quant. Grav. 2002, 19, 2961–2982. [Google Scholar] [CrossRef]
- Kostelecky, A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Stavrinos, P.C.; Alexiou, M. Raychaudhuri equation in the Finsler-Randers space-time and generalized scalar-tensor theories. Int. J. Geom. Meth. Mod. Phys. 2017, 15, 1850039. [Google Scholar] [CrossRef] [Green Version]
- Hasse, W.; Perlick, V. Redshift in Finsler spacetimes. Phys. Rev. D 2019, 100, 024033. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Doubly special relativity. Nature 2002, 418, 34–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freidel, L.; Kowalski-Glikman, J.; Smolin, L. 2+1 gravity and doubly special relativity. Phys. Rev. D 2004, 69, 044001. [Google Scholar] [CrossRef] [Green Version]
- Magueijo, J.; Smolin, L. Gravity’s rainbow. Class. Quant. Grav. 2004, 21, 1725–1736. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Curved Momentum Space, Locality, and Generalized Space-Time. Universe 2021, 7, 99. [Google Scholar] [CrossRef]
- Relancio, J.J. Geometry of multiparticle systems with a relativistic deformed kinematics and the relative locality principle. Phys. Rev. D 2021, 104, 024017. [Google Scholar] [CrossRef]
- Wagner, F. Generalized uncertainty principle or curved momentum space? Phys. Rev. D 2021, 104, 126010. [Google Scholar] [CrossRef]
- Bonanno, A.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Percacci, R.; Reuter, M.; Saueressig, F.; Vacca, G.P. Critical reflections on asymptotically safe gravity. Front. Phys. 2020, 8, 269. [Google Scholar] [CrossRef]
- Dubovsky, S.L.; Sibiryakov, S.M. Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind. Phys. Lett. B 2006, 638, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Barausse, E.; Jacobson, T.; Sotiriou, T.P. Black holes in Einstein-aether and Horava-Lifshitz gravity. Phys. Rev. D 2011, 83, 124043. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Sibiryakov, S. Horava gravity versus thermodynamics: The Black hole case. Phys. Rev. D 2011, 84, 124043. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, J.; Colombo, M.; Sotiriou, T.P. Causality and black holes in spacetimes with a preferred foliation. Class. Quant. Grav. 2016, 33, 235003. [Google Scholar] [CrossRef] [Green Version]
- Benkel, R.; Bhattacharyya, J.; Louko, J.; Mattingly, D.; Sotiriou, T.P. Dynamical obstruction to perpetual motion from Lorentz-violating black holes. Phys. Rev. D 2018, 98, 024034. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Valea, M.; Liberati, S.; Santos-Garcia, R. Hawking Radiation from Universal Horizons. J. High Energy Phys. 2021, 4, 255. [Google Scholar] [CrossRef]
- Peng, J.J.; Wu, S.Q. Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory. Gen. Rel. Grav. 2008, 40, 2619–2626. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F. Black hole remnant from gravity’s rainbow. Phys. Rev. D 2014, 89, 104040. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ling, Y.; Han, X. Modified (A)dS Schwarzschild black holes in Rainbow spacetime. Class. Quant. Grav. 2009, 26, 065004. [Google Scholar] [CrossRef] [Green Version]
- Gim, Y.; Kim, W. Thermodynamic phase transition in the rainbow Schwarzschild black hole. J. Cosmol. Astropart. Phys. 2014, 10, 003. [Google Scholar] [CrossRef] [Green Version]
- Gim, Y.; Kim, W. Hawking, fiducial, and free-fall temperature of black hole on gravity’s rainbow. Eur. Phys. J. C 2016, 76, 166. [Google Scholar] [CrossRef] [Green Version]
- Mu, B.; Wang, P.; Yang, H. Thermodynamics and Luminosities of Rainbow Black Holes. J. Cosmol. Astropart. Phys. 2015, 11, 045. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.W.; Kim, S.K.; Park, Y.J. Thermodynamic stability of modified Schwarzschild–AdS black hole in rainbow gravity. Eur. Phys. J. C 2016, 76, 557. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Wang, P.; Yang, H. Free-fall frame black hole in gravity’s rainbow. Phys. Rev. D 2016, 94, 064068. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, V.B.; Christiansen, H.R.; Cunha, M.S.; Muniz, C.R. Exact solutions and phenomenological constraints from massive scalars in a gravity’s rainbow spacetime. Phys. Rev. D 2017, 96, 024018. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.W.; Tang, D.L.; Feng, D.D.; Yang, S.Z. The thermodynamics and phase transition of a rainbow black hole. Mod. Phys. Lett. A 2019, 35, 2050010. [Google Scholar] [CrossRef]
- Feng, Z.W.; Zhou, X.; Zhou, S.Q.; Feng, D.D. Rainbow gravity corrections to the information flux of a black hole and the sparsity of Hawking radiation. Annals Phys. 2020, 416, 168144. [Google Scholar] [CrossRef] [Green Version]
- Shahjalal, M. Phase transition of quantum-corrected Schwarzschild black hole in rainbow gravity. Phys. Lett. B 2018, 784, 6–11. [Google Scholar] [CrossRef]
- Yadav, G.; Komal, B.; Majhi, B.R. Rainbow Rindler metric and Unruh effect. Int. J. Mod. Phys. A 2017, 32, 1750196. [Google Scholar] [CrossRef] [Green Version]
- Relancio, J.J.; Liberati, S. Towards a geometrical interpretation of rainbow geometries. Class. Quant. Grav. 2021, 38, 135028. [Google Scholar] [CrossRef]
- Relancio, J.J.; Liberati, S. Constraints on the deformation scale of a geometry in the cotangent bundle. Phys. Rev. D 2020, 102, 104025, Erratum in Phys. Rev. D 2021, 103, 069901. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press: Cambridge, UK, 1984. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago Univ. Pr.: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Kosinski, P.; Lukierski, J.; Maslanka, P. kappa deformed Wigner construction of relativistic wave functions and free fields on kappa-Minkowski space. Nucl. Phys. B Proc. Suppl. 2001, 102, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, T.R.; Gupta, K.S.; Harikumar, E.; Meljanac, S.; Meljanac, D. Deformed Oscillator Algebras and QFT in kappa-Minkowski Spacetime. Phys. Rev. D 2009, 80, 025014. [Google Scholar] [CrossRef] [Green Version]
- Poulain, T.; Wallet, J.C. κ-Poincaré invariant orientable field theories at one-loop. J. High Energy Phys. 2019, 1, 064. [Google Scholar] [CrossRef] [Green Version]
- Arzano, M.; Bevilacqua, A.; Kowalski-Glikman, J.; Rosati, G.; Unger, J. κ-deformed complex fields and discrete symmetries. Phys. Rev. D 2021, 103, 106015. [Google Scholar] [CrossRef]
- Lizzi, F.; Mercati, F. κ-Poincaré-comodules, Braided Tensor Products and Noncommutative Quantum Field Theory. Phys. Rev. D 2021, 103, 126009. [Google Scholar] [CrossRef]
- Pfeifer, C.; Relancio, J.J. Deformed relativistic kinematics on curved spacetime—A geometric approach. arXiv 2021, arXiv:2103.16626. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of kappa Poincare algebra. Phys. Lett. B 2002, 539, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues. Symmetry 2010, 2, 230–271. [Google Scholar] [CrossRef] [Green Version]
- Miron, R.; Hrimiuc, D.; Shimada, H.; Sabau, S. The Geometry of Hamilton and Lagrange Spaces; Fundamental Theories of Physics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Majid, S.; Ruegg, H. Bicrossproduct structure of kappa Poincare group and noncommutative geometry. Phys. Lett. B 1994, 334, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Cropp, B.; Liberati, S.; Visser, M. Surface gravities for non-Killing horizons. Class. Quant. Grav. 2013, 30, 125001. [Google Scholar] [CrossRef] [Green Version]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Gubitosi, G.; Mercati, F. Relative Locality in κ-Poincaré. Class. Quant. Grav. 2013, 30, 145002. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.; Zelnikov, A. Introduction to Black Hole Physics; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- Hajian, K.; Liberati, S.; Sheikh-Jabbari, M.M.; Vahidinia, M.H. On Black Hole Temperature in Horndeski Gravity. Phys. Lett. B 2021, 812, 136002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Relancio, J.J.; Liberati, S. Black Hole Surface Gravity in Doubly Special Relativity Geometries. Universe 2022, 8, 136. https://doi.org/10.3390/universe8020136
Relancio JJ, Liberati S. Black Hole Surface Gravity in Doubly Special Relativity Geometries. Universe. 2022; 8(2):136. https://doi.org/10.3390/universe8020136
Chicago/Turabian StyleRelancio, José Javier, and Stefano Liberati. 2022. "Black Hole Surface Gravity in Doubly Special Relativity Geometries" Universe 8, no. 2: 136. https://doi.org/10.3390/universe8020136
APA StyleRelancio, J. J., & Liberati, S. (2022). Black Hole Surface Gravity in Doubly Special Relativity Geometries. Universe, 8(2), 136. https://doi.org/10.3390/universe8020136