# On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Self-Intersection Region of a Figure-Eight Shaped Center-Vortex Loop

## 3. Lowest Spherically Symmetric Breathing Mode

## 4. Summary and Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Notes

1 | For the sake of pointing out classical vs. quantum physics in association with (anti)calorons, we alternate between SI and natural units in this introduction, and from Section 2 onward, we exclusively work in natural units where the speed of light in vacuum, Planck’s (reduced) quantum of action, and Boltzmann’s constant are all set equal to unity: $c=\hslash ={k}_{B}=1$. |

2 | |

3 | In physics models, charges and fluxes with respect to U(1) ⊂ SU(2) need to be interpreted in an electric-magnetically dual manner [1]. |

## References

- Hofmann, R. The Thermodynamics of Quantum Yang–Mills Theory: Theory and Application, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Del Debbio, L.; Manfried, F.; Greensite, J.; Olejnik, S. Center dominance, center vortices, and confinement. In Proceedings of the NATO Advanced Research Workshop on Theoretical Physics: New Developments in Quantum Field Theory, Zakopane, Poland, 14–20 June 1997; Volume 6, p. 47. [Google Scholar]
- Diakonov, D.; Gromov, N.; Petrov, V.; Slizovskiy, S. Quantum weights of dyons and of instantons with nontrivial holonomy. Phys. Rev. D
**2004**, 70, 036003. [Google Scholar] [CrossRef] [Green Version] - Fodor, G.; Racz, I. What Does a Strongly Excited ’t Hooft-Polyakov Magnetic Monopole Do? Phys. Rev. Lett.
**2004**, 92, 151801. [Google Scholar] [CrossRef] [Green Version] - Forgacs, P.; Volkov, M.S. Resonant Excitations of the ’t Hooft-Polyakov Monopole. Phys. Rev. Lett.
**2004**, 92, 151802. [Google Scholar] [CrossRef] [Green Version] - Faber, M. A model for topological fermions. Few Body Syst.
**2001**, 30, 149. [Google Scholar] [CrossRef] [Green Version] - Hofmann, R. The isolated electron: De Broglie’s “hidden” thermodynamics, SU(2) Quantum Yang-Mills theory, and a strongly perturbed BPS monopole. Entropy
**2017**, 19, 575. [Google Scholar] [CrossRef] [Green Version] - De Broglie, L. Recherches sur la Theorie Des Quanta. Annales de Physique
**1925**, 10, 4925. [Google Scholar] [CrossRef] [Green Version] - De Broglie, L. The thermodynamics of the isolated particle. Great Probl. Sci.
**1964**, 17, 1. [Google Scholar] - Schrödinger, E. Quantisierung als Eigenwertproblem I. Ann. Phys.
**1926**, 79, 361. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem II. Ann. Phys.
**1926**, 79, 489. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem III. Ann. Phys.
**1926**, 80, 437. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem IV. Ann. Phys.
**1926**, 81, 109. [Google Scholar] [CrossRef] - Born, M. Zur Quantenmechanik der Stoßvorgänge. Z. Phys.
**1926**, 37, 863. [Google Scholar] [CrossRef] - Moosmann, J.; Hofmann, R. Evolving center-vortex loops. ISRN Math. Phys.
**2012**, 2012, 236783. [Google Scholar] [CrossRef] [Green Version] - Nahm, W. A simple formalism for the BPS monopole. Phys. Lett. B
**1980**, 90, 413. [Google Scholar] [CrossRef] [Green Version] - Nahm, W. All self-dual multimonopoles for arbitrary gauge groups. In CERN Preprint TH-3172; CERN: Geneva, Switzerland, 1981. [Google Scholar]
- Nahm, W. The Construction of all Self-dual Multimonopoles by the ADHM Method. In Monopoles in Quantum Field Theory; Craigie, N., Ed.; World Scientific: Singapore, 1982; p. 87. [Google Scholar]
- Nahm, W. Self-dual monopoles and calorons. In Group Theoretical Methods in Physics; Springer: Berlin/Heidelberg, Germany, 1983; p. 189. [Google Scholar]
- Kraan, T.C.; Van Baal, P. Exact, T-duality, between calorons, Taub-NUTspaces. Phys. Lett. B
**1998**, 428, 268. [Google Scholar] [CrossRef] [Green Version] - Kraan, T.C.; Van Baal, P. Periodic instantons with non-trivial holonomy. Nucl. Phys. B
**1998**, 533, 627. [Google Scholar] [CrossRef] [Green Version] - Lee, K.; Lu, C. SU(2) calorons and magnetic monopoles. Phys. Rev. D
**1998**, 58, 025011. [Google Scholar] [CrossRef] [Green Version] - ’t Hooft, G. On the phase transition towards permanent quark confinement. Nucl. Phys. B
**1978**, 138, 1. [Google Scholar] [CrossRef] - Prasad, M.K.; Sommerfield, C.M. Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon. Phys. Rev. Lett.
**1975**, 35, 760. [Google Scholar] [CrossRef] - Herbst, U.; Hofmann, R. Emergent Inert Adjoint Scalar Field in SU(2) Yang-Mills Thermodynamics due to Coarse-Grained Topological Fluctuations. ISRN High Energy Phys.
**2012**, 2012, 373121. [Google Scholar] [CrossRef] [Green Version] - Hartl, G.V.; Hu, M.; Sader, J.E. Softening of the symmetry breaking mode in gold particles by laser-induced heating. J. Phys. Chem. B
**2003**, 107, 7472. [Google Scholar] [CrossRef] - Lamb, H. On the vibrations of an elastic sphere. Proc. Lond. Math. Soc.
**1882**, 13, 189. [Google Scholar] [CrossRef] [Green Version] - Giacosa, F.; Hofmann, R. Bursts of low-energy electron-positron pairs in TeV-range collider physics. Mod. Phys. Lett. A
**2009**, 24, 1937. [Google Scholar] [CrossRef] [Green Version] - Faber, M. A Geometric Model in 3+1D Space-Time for Electrodynamical Phenomena. Universe
**2022**, 8, 73. [Google Scholar] [CrossRef] - Grandou, T.; Hofmann, R. Thermal ground state and nonthermal probes. Adv. Math. Phys.
**2015**, 2015, 197197. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Saturation towards a harmonic Euclidean time dependence of the contributions of Harrington–Shepard calorons to the field-strength correlation defining the phase of the field $\varphi $ as a function of the scaled cutoff $\xi \equiv \frac{\rho}{\beta}$ for the instanton-scale-parameter integration. Cutting off at $\rho \sim {r}_{0}=1.29{\beta}_{0}$ suggests that there are (mild) deviations from a harmonic dependence. Figure taken from [25].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hofmann, R.; Grandou, T.
On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics. *Universe* **2022**, *8*, 117.
https://doi.org/10.3390/universe8020117

**AMA Style**

Hofmann R, Grandou T.
On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics. *Universe*. 2022; 8(2):117.
https://doi.org/10.3390/universe8020117

**Chicago/Turabian Style**

Hofmann, Ralf, and Thierry Grandou.
2022. "On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics" *Universe* 8, no. 2: 117.
https://doi.org/10.3390/universe8020117