Radio Emission from Supernova Remnants: Model Comparison with Observations
Abstract
:1. Introduction
2. Physical Properties of SNRs
3. Analysis
3.1. Model for Radio Emission at 1.4 GHz
3.2. Analysis of the Efficiency
3.3. Efficiency Dependence on Shock Velocity and ISM Density
3.4. Exploring Dependence on Shock Radius
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SN | supernova |
SNR | supernova remnant |
ISM | interstellar medium |
CC | core collapse |
1 | The dependence of on explosion energy , was tested: the result was a scatter diagram with essentially no correlation between and , with correlation coefficient = 0.07 |
2 | This was implemented by minimizing the sum of absolute values of the power-law indices for the power-law fits to H vs. and H vs. . |
3 | The dependence of J on energy was checked, and showed essentially no correlation, with correlation coefficient of 0.02. |
4 |
References
- Dubner, G.; Giacani, E. Radio emission from supernova remnants. Astron. Astrophys. Rev. 2015, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Green, D.A. A revised catalogue of 294 Galactic supernova remnants. J. Astrophys. Astron. 2019, 40, 36. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.F.; Li, X.-D.; Wang, N.; Yuan, J.P.; Wang, P.; Peng, Q.H.; Du, Y.J. Constraining the braking indices of magnetars. Mon. Not. R. Astron. Soc. 2016, 456, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wang, N.; Shan, H.; Li, X.; Wang, W. The Dipole Magnetic Field and Spin-down Evolutions of the High Braking Index Pulsar PSR J1640-4631. Astrophys. J. 2017, 849, 19. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gao, Z.; Jia, H.; Wang, N.; Li, X. Estimation of Electrical Conductivity and Magnetization Parameter of Neutron Star Crusts and Applied to the High-Braking-Index Pulsar PSR J1640-4631. Universe 2020, 6, 63. [Google Scholar] [CrossRef]
- Yan, F.; Gao, Z.; Yang, W.; Dong, A. Explaining high braking indices of magnetars SGR 0501+4516 and 1E 2259+586 using the double magnetic dipole model. Astron. Nachrichten 2021, 342, 249–254. [Google Scholar] [CrossRef]
- Hamil, O.; Stone, N.J.; Stone, J.R. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism. Phys. Rev. D 2016, 94, 063012. [Google Scholar] [CrossRef] [Green Version]
- Sedov, L.I. Similarity and Dimensional Methods in Mechanics; Friedman, M., Holt, M., Eds.; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Cioffi, D.; McKee, C.; Bertschinger, E. Dynamics of Radiative Supernova Remnants. Astrophys. J. 1988, 334, 252. [Google Scholar] [CrossRef]
- Chevalier, R.A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 1982, 258, 790–797. [Google Scholar] [CrossRef]
- Truelove, J.; McKee, C. Evolution of Nonradiative Supernova Remnants. Astrophys. J. Suppl. 1999, 120, 299–326. [Google Scholar] [CrossRef]
- Badenes, C.; Borkowski, K.; Hughes, J.; Hwang, U.; Bravo, E. Constraints on the Physics of Type Ia Supernovae from the X-ray Spectrum of the Tycho Supernova Remnant. Astrophys. J. 2006, 645, 1373–1391. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Wang, Y.; Lawton, B.; Ranasinghe, S.; Filipović, M. Emission Measures and Emission-measure-weighted Temperatures of Shocked Interstellar Medium and Ejecta in Supernova Remnants. Astron. J. 2019, 158, 149. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Williams, J. A Python Calculator for Supernova Remnant Evolution. Astron. J. 2017, 153, 239. [Google Scholar] [CrossRef] [Green Version]
- Sarbadhicary, S.; Badenes, C.; Chomiuk, L.; Caprioli, D.; Huizenga, D. Supernova remnants in the Local Group—I. A model for the radio luminosity function and visibility times of supernova remnants. Mon. Not. R. Astron. Soc. 2018, 464, 2326–2340. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, M.; Urošević, D.; Arbutina, B.; Orlando, S.; Maxted, N.; Filipović, M. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations. Astrophys. J. 2018, 852, 84. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Ranasinghe, S. Evolutionary Models for 15 Galactic Supernova Remnants with New Distances. Astrophys. J. 2018, 866, 9. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Ranasinghe, S.; Gelowitz, M. Evolutionary Models for 43 Galactic Supernova Remnants with Distances and X-ray Spectra. Astrophys. J. Suppl. 2020, 248, 16. [Google Scholar] [CrossRef]
- Crutcher, R.M. Magnetic Fields in Molecular Clouds: Observations Confront Theory. Astrophys. J. 1999, 520, 706–713. [Google Scholar] [CrossRef]
- Leahy, D. The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data. Universe 2022, 8, 274. [Google Scholar] [CrossRef]
- Bell, A.R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 2004, 353, 550–558. [Google Scholar] [CrossRef]
- Caprioli, D.; Spitkovsky, A. Simulations of Ion Acceleration at Non-relativistic Shocks. II. Magnetic Field Amplification. Astrophys. J. 2014, 794, 46. [Google Scholar] [CrossRef] [Green Version]
- Bandiera, R.; Petruk, O. A statistical approach to radio emission from shell-type SNRs. I. Basic ideas, techniques, and first results. Astron. Astrophys. 2010, 509, A34. [Google Scholar] [CrossRef]
Name | Type | Age [10 yrs] | Energy [ erg] | Density [ erg] | Shock Radius [pc] | Shock Velocity [km/s] | Distance [kpc | 1.4 GHz Flux Density [Jy] |
---|---|---|---|---|---|---|---|---|
G 38.7 − 1.3 | CC? | 86 | 1.27 | 1.32 | 14.9 | 960 | 4 | ? |
G 53.6 − 2.2 | Ia | 446 | 7.65 | 9.62 | 34.6 | 310 | 7.8 | 6.76 |
G 67.7 + 1.8 | CC? | 23 | 0.28 | 3.53 | 4 | 950 | 2 | 0.81 |
G 78.2 + 2.1 | CC? | 94 | 6.29 | 5.41 | 19 | 910 | 2.1 | 270. |
G 82.2 + 5.3 | unk. | 189 | 8.26 | 1.10 | 37 | 850 | 3.2 | 101. |
G 84.2 − 0.8 | unk. | 124 | 1.59 | 2.26 | 18 | 76 | 6 | 9.30 |
G 85.4 + 0.7 | CC? | 57 | 1.79 | 2.20 | 12 | 1180 | 3.5 | ? |
G 85.9 − 0.6 | Ia? | 80 | 1.4 | 1.36 | 17 | 1010 | 4.8 | ? |
G 89. + 4.7 | CC | 164 | 3.64 | 0.71 | 31 | 910 | 1.9 | 194. |
G 109.1 − 1.0 | CC | 127 | 2.6 | 35.59 | 12.6 | 420 | 3.1 | 17.2 |
G 116.9 + 0.2 | CC | 167 | 1.98 | 17.50 | 15.3 | 390 | 3.1 | 6.60 |
G 132.7 + 1.3 | unk. | 279 | 3.83 | 10.89 | 24 | 350 | 2.1 | 36.8 |
G 156.2 + 5.7 | CC | 291 | 61.2 | 20.38 | 38 | 510 | 2.5 | 4.22 |
G 160.9 + 2.6 | CC? | 57 | 2.23 | 0.47 | 16 | 1570 | 0.8 | 88.7 |
G 166.0 + 4.3 | unk. | 145 | 17.8 | 4.37 | 30 | 850 | 4.5 | 6.18 |
G 260.4 − 3.4 | CC | 33 | 1.34 | 0.35 | 10.5 | 1800 | 1.3 | 110. |
G 272.2 − 3.2 | Ia | 75 | 4.64 | 14.1 | 14 | 760 | 6 | 0.33 |
G 296.7 − 0.9 | unk. | 116 | 6.9 | 18.0 | 17 | 610 | 10 | 2.54 |
G 296.8 − 0.3 | CC? | 104 | 6.76 | 2.23 | 23.7 | 1050 | 9.6 | 7.35 |
G 299.2 − 2.9 | Ia | 88 | 0.74 | 2.23 | 14 | 770 | 5 | 0.43 |
G 304.6 + 0.1 | unk. | 89 | 4.62 | 4.21 | 18 | 960 | 15 | 11.8 |
G 306.3 − 0.9 | Ia | 128 | 10.2 | 250.16 | 11.6 | 310 | 20 | 0.14 |
G 308.4 − 1.4 | CC? | 29 | 0.44 | 16.03 | 4.1 | 800 | 3.1 | 0.34 |
G 309.2 − 0.6 | CC? | 11 | 3.43 | 0.21 | 8 | 4010 | 2.8 | 6.12 |
G 311.5 − 0.3 | unk. | 69 | 1.07 | 6.21 | 10 | 810 | 10 | 2.54 |
G 315.4 − 2.3 | Ia | 116 | 8.49 | 24.75 | 17 | 580 | 2.8 | 40.0 |
G 322.1 + 0.0 | CC | 43 | 1.4 | 4.99 | 8.5 | 1110 | 9.3 | ? |
G 327.4 + 0.4 | unk. | 106 | 2.99 | 22.47 | 13.1 | 540 | 4.3 | 24.5 |
G 330.0 + 15 | unk. | 371 | 1.52 | 3.98 | 27 | 310 | 1 | 296. |
G 330.2 + 1.0 | CC | 98 | 1.97 | 3.15 | 16 | 860 | 10 | 4.52 |
G 332.4 − 0.4 | CC? | 40 | 0.83 | 110.05 | 4.5 | 630 | 3 | 23.7 |
G 332.4 + 0.1 | unk. | 70 | 27.4 | 11.87 | 20 | 1180 | 9.2 | 22.0 |
G 332.5 − 5.6 | unk. | 120 | 0.81 | 1.48 | 15.5 | 720 | 3 | 1.5 |
G 337.2 − 0.7 | Ia? | 31 | 0.55 | 44.23 | 4.7 | 760 | 5.5 | 1.31 |
G 337.8 − 0.1 | CC? | 36 | 10.6 | 5.75 | 13.4 | 1930 | 12.3 | 12.7 |
G 347.3 − 0.5 | CC | 68 | 0.73 | 6.75 | 8.8 | 720 | 1 | 25.5 |
G 348.5 + 0.1 | CC | 114 | 8.77 | 21.57 | 17.2 | 620 | 7.9 | 65.1 |
G 348.7 + 0.3 | CC | 149 | 29.5 | 5.07 | 32.8 | 890 | 13.2 | 23.5 |
G 349.7 + 0.2 | CC | 29 | 1.5 | 343.79 | 3.7 | 650 | 11.5 | 16.9 |
G 350.1 − 0.3 | CC | 25 | 0.60 | 428.43 | 2.6 | 580 | 9 | 4.58 |
G 352.7 − 0.1 | Ia? | 76 | 2.44 | 165.61 | 7.6 | 400 | 7.5 | 3.27 |
G 355.6 − 0.0 | unk. | 90 | 4.91 | 25.91 | 13.2 | 630 | 13 | 2.55 |
G 359.1 − 0.5 | unk. | 187 | 0.84 | 3.61 | 17.5 | 110 | 5 | 12.2 |
G 18.1 − 0.1 | unk. | 58 | 1.89 | 87.3 | 7 | 550 | 6.4 | 3.89 |
G 21.5 − 0.9 | CC | 25 | 0.19 | 176 | 2.1 | 480 | 4.4 | 5.96 |
G 21.8 − 0.6 | unk. | 104 | 3.37 | 7.44 | 16.3 | 710 | 5.6 | 53.8 |
G 27.4 + 0.0 | CC | 21 | 3.34 | 122 | 4.6 | 1110 | 5.8 | 4.78 |
G 28.6 − 0.1 | unk. | 149 | 10.1 | 2.79 | 29.3 | 840 | 9.6 | 2.55 |
G 29.7 − 0.3 | CC | 26 | 0.56 | 75.7 | 3.3 | 720 | 5.6 | 8.09 |
G 31.9 + 0.0 | CC | 86 | 4.06 | 453 | 7.2 | 1070 | 7.1 | 21.3 |
G 32.8 − 0.1 | unk. | 78 | 1.12 | 1.75 | 13 | 930 | 4.8 | 10.3 |
G 33.6 + 0.1 | CC | 84 | 0.45 | 56.5 | 6.3 | 390 | 3.5 | 16.8 |
G 34.7 − 0.4 | unk. | 90 | 23.1 | 154 | 13 | 580 | 3 | 212. |
G 39.2 − 0.3 | CC | 60 | 2.62 | 33.7 | 9.1 | 710 | 8.5 | 16.1 |
G 41.1 − 0.3 | Ia | 47 | 4.93 | 1940 | 4.45 | 300 | 8.5 | 21.1 |
G 43.3 − 0.2 | unk. | 33 | 17.8 | 115 | 8.55 | 1090 | 11.3 | 32.6 |
G 49.2 − 0.7 | CC | 152 | 11. | 3.38 | 29 | 800 | 5.6 | 145. |
G 54.1 + 0.3 | CC | 22 | 6.4 | 11.2 | 7.9 | 2040 | 4.9 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leahy, D.A.; Merrick, F.; Filipović, M. Radio Emission from Supernova Remnants: Model Comparison with Observations. Universe 2022, 8, 653. https://doi.org/10.3390/universe8120653
Leahy DA, Merrick F, Filipović M. Radio Emission from Supernova Remnants: Model Comparison with Observations. Universe. 2022; 8(12):653. https://doi.org/10.3390/universe8120653
Chicago/Turabian StyleLeahy, Denis A., Felicity Merrick, and Miroslav Filipović. 2022. "Radio Emission from Supernova Remnants: Model Comparison with Observations" Universe 8, no. 12: 653. https://doi.org/10.3390/universe8120653
APA StyleLeahy, D. A., Merrick, F., & Filipović, M. (2022). Radio Emission from Supernova Remnants: Model Comparison with Observations. Universe, 8(12), 653. https://doi.org/10.3390/universe8120653