Gap Transients Interacting with Circumstellar Medium
Abstract
:1. Introduction
2. Supernova Impostors
Pre-Supernova Outbursts
3. Intermediate Luminosity Red Transients
4. Luminous Red Novae
5. Unknown Transients
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
SNe | Supernovae |
SL SNe | Superluminous SNe |
CC SNe | Core-collapse supernovae |
EC SNe | Electron Capture Supernovae |
TDE | Tidal Disruption Event |
LBVs | Luminous Blue Variables |
ILRTs | Intermediate-luminosity red transients |
LRNe | Luminous red novae |
AGB | Asymptotic giant branch |
FWHM | Full-width at half-maximum |
CSM | Circumstellar material |
HST | Hubble Space Telescope |
NIR | Near Infrared |
ZTF | Zwicky Transient Facility |
ATLAS | Asteroid Terrestrial-impact Last Alert System |
Pan-STARRS | Panoramic Survey Telescope and Rapid Response System |
OGLE | Optical Gravitational Lensing Experiment |
1 | However, weak [Ca II] lines were also detected in the spectra of the LRN AT 2018hso [116]. |
2 | SNhunt248 is a LRN candidate whose nature is debated [124]. |
References
- Inserra, C. Observational properties of extreme supernovae. Nat. Astron. 2019, 3, 697–705. [Google Scholar] [CrossRef]
- Gal-Yam, A. The Most Luminous Supernovae. Annu. Rev. Astron. Astrophys. 2019, 57, 305–333. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yan, L.; Kangas, T.; Lunnan, R.; Schulze, S.; Sollerman, J.; Perley, D.A.; Chen, T.W.; Gal-Yam, A.; Wang, X.F.; et al. The Hydrogen-Poor Superluminous Supernovae from the Zwicky Transient Facility Phase-I Survey: I. Data. arXiv 2022, arXiv:2202.02059. [Google Scholar]
- Chen, Z.H.; Yan, L.; Kangas, T.; Lunnan, R.; Sollerman, J.; Schulze, S.; Perley, D.A.; Chen, T.W.; Gal-Yam, A.; Wang, X.F.; et al. The Hydrogen-Poor Superluminous Supernovae from the Zwicky Transient Facility Phase-I Survey: II. Light Curve Modeling and Analysis. arXiv 2022, arXiv:2202.02060. [Google Scholar]
- Drout, M.R.; Chornock, R.; Soderberg, A.M.; Sanders, N.E.; McKinnon, R.; Rest, A.; Foley, R.J.; Milisavljevic, D.; Margutti, R.; Berger, E.; et al. Rapidly Evolving and Luminous Transients from Pan-STARRS1. Astrophys. J. 2014, 794, 23. [Google Scholar] [CrossRef]
- Margutti, R.; Metzger, B.D.; Chornock, R.; Vurm, I.; Roth, N.; Grefenstette, B.W.; Savchenko, V.; Cartier, R.; Steiner, J.F.; Terreran, G.; et al. An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophys. J. 2019, 872, 18. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Perley, D.A.; Gal-Yam, A.; Lunnan, R.; Sollerman, J.; Schulze, S.; Das, K.K.; Dobie, D.; Yao, Y.; Fremling, C.; et al. The Photometric and Spectroscopic Evolution of Rapidly Evolving Extragalactic Transients in ZTF. arXiv 2021, arXiv:2105.08811. [Google Scholar]
- Fraser, M.; Stritzinger, M.D.; Brennan, S.J.; Pastorello, A.; Cai, Y.; Piro, A.L.; Ashall, C.; Brown, P.; Burns, C.R.; Elias-Rosa, N.; et al. SN 2021csp—The explosion of a stripped envelope star within a H and He-poor circumstellar medium. arXiv 2021, arXiv:2108.07278. [Google Scholar]
- Xiang, D.; Wang, X.; Lin, W.; Mo, J.; Lin, H.; Burke, J.; Hiramatsu, D.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; et al. The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova. Astrophys. J. 2021, 910, 42. [Google Scholar] [CrossRef]
- Metzger, B.D. Luminous Fast Blue Optical Transients and Type Ibn/Icn SNe from Wolf-Rayet/Black Hole Mergers. Astrophys. J. 2022, 932, 84. [Google Scholar] [CrossRef]
- Berger, E.; Soderberg, A.M.; Chevalier, R.A.; Fransson, C.; Foley, R.J.; Leonard, D.C.; Debes, J.H.; Diamond-Stanic, A.M.; Dupree, A.K.; Ivans, I.I.; et al. An Intermediate Luminosity Transient in NGC 300: The Eruption of a Dust-Enshrouded Massive Star. Astrophys. J. 2009, 699, 1850–1865. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. Formation of Bipolar Planetary Nebulae by Intermediate-luminosity Optical Transients. Astrophys. J. 2012, 746, 100. [Google Scholar] [CrossRef]
- Soker, N.; Kaplan, N. Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering. Res. Astron. Astrophys. 2021, 21, 90. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Peng, C.Y.; King, J.Y.; Filippenko, A.V.; Treffers, R.R.; Li, W.; Richmond, M.W. SN 1997bs in M66: Another Extragalactic η Carinae Analog? Publ. Astron. Soc. Pac. 2000, 112, 1532–1541. [Google Scholar] [CrossRef]
- Boschi, F.; Munari, U. M 31-RV evolution and its alleged multi-outburst pattern. Astron. Astrophys. 2004, 418, 869–875. [Google Scholar] [CrossRef]
- Graham, M.J.; Kulkarni, S.R.; Bellm, E.C.; Adams, S.M.; Barbarino, C.; Blagorodnova, N.; Bodewits, D.; Bolin, B.; Brady, P.R.; Cenko, S.B.; et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 2019, 131, 078001. [Google Scholar] [CrossRef]
- Tonry, J.L.; Denneau, L.; Heinze, A.N.; Stalder, B.; Smith, K.W.; Smartt, S.J.; Stubbs, C.W.; Weiland, H.J.; Rest, A. ATLAS: A High-cadence All-sky Survey System. Publ. Astron. Soc. Pac. 2018, 130, 064505. [Google Scholar] [CrossRef]
- Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2016, arXiv:1612.05560. [Google Scholar]
- Pastorello, A.; Fraser, M. Supernova impostors and other gap transients. Nat. Astron. 2019, 3, 676–679. [Google Scholar] [CrossRef]
- Kashi, A.; Soker, N. Common Powering Mechanism of Intermediate Luminosity Optical Transients and Luminous Blue Variables. arXiv 2010, arXiv:1011.1222. [Google Scholar]
- Kashi, A.; Soker, N. Operation of the jet feedback mechanism (JFM) in intermediate luminosity optical transients (ILOTs). Res. Astron. Astrophys. 2016, 16, 99. [Google Scholar] [CrossRef]
- Kashi, A.; Soker, N. An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi. Mon. Not. R. Astron. Soc. 2017, 468, 4938–4943. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. Explaining two recent intermediate-luminosity optical transients (ILOTs) by a binary interaction and jets. Mon. Not. R. Astron. Soc. 2016, 462, 217–222. [Google Scholar] [CrossRef]
- Rau, A.; Kulkarni, S.R.; Law, N.M.; Bloom, J.S.; Ciardi, D.; Djorgovski, G.S.; Fox, D.B.; Gal-Yam, A.; Grillmair, C.C.; Kasliwal, M.M.; et al. Exploring the Optical Transient Sky with the Palomar Transient Factory. Publ. Astron. Soc. Pac. 2009, 121, 1334. [Google Scholar] [CrossRef]
- Kasliwal, M.M.; Kulkarni, S.R.; Arcavi, I.; Quimby, R.M.; Ofek, E.O.; Nugent, P.; Jacobsen, J.; Gal-Yam, A.; Green, Y.; Yaron, O.; et al. PTF 10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99. Astrophys. J. 2011, 730, 134. [Google Scholar] [CrossRef]
- Smith, N.; Owocki, S.P. On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars. Astrophys. J. 2006, 645, L45–L48. [Google Scholar] [CrossRef]
- Schlegel, E.M. A new subclass of Type II supernovae? Mon. Not. R. Astron. Soc. 1990, 244, 269–271. [Google Scholar]
- Filippenko, A.V. Optical Spectra of Supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309–355. [Google Scholar] [CrossRef]
- Maund, J.R.; Smartt, S.J.; Kudritzki, R.P.; Pastorello, A.; Nelemans, G.; Bresolin, F.; Patat, F.; Gilmore, G.F.; Benn, C.R. Faint supernovae and supernova impostors: Case studies of SN 2002kg/NGC 2403-V37 and SN 2003gm. Mon. Not. R. Astron. Soc. 2006, 369, 390–406. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K. The luminous blue variables: Astrophysical geysers. Publ. Astron. Soc. Pac. 1994, 106, 1025–1051. [Google Scholar] [CrossRef]
- Maeder, A.; Conti, P.S. Massive Star Populations in Nearby Galaxies. Annu. Rev. Astron. Astrophys. 1994, 32, 227–275. [Google Scholar] [CrossRef]
- Smith, N.; Tombleson, R. Luminous blue variables are antisocial: Their isolation implies that they are kicked mass gainers in binary evolution. Mon. Not. R. Astron. Soc. 2015, 447, 598–617. [Google Scholar] [CrossRef]
- Aghakhanloo, M.; Murphy, J.W.; Smith, N.; Hložek, R. Modelling luminous-blue-variable isolation. Mon. Not. R. Astron. Soc. 2017, 472, 591–603. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Weis, K.; Davidson, K.; Gordon, M.S. On the Social Traits of Luminous Blue Variables. Astrophys. J. 2016, 825, 64. [Google Scholar] [CrossRef]
- Aadland, E.; Massey, P.; Neugent, K.F.; Drout, M.R. Shedding Light on the Isolation of Luminous Blue Variables. Astrophys. J. 2018, 156, 294. [Google Scholar] [CrossRef]
- Soker, N. A model for the strings of η Carinae. Astron. Astrophys. 2001, 377, 672–676. [Google Scholar] [CrossRef]
- Soker, N. The departure of η Carinae from axisymmetry and the binary hypothesis. Mon. Not. R. Astron. Soc. 2001, 325, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Davidson, K.; Humphreys, R.M. The Great Eruption of η Carinae. Nature 2012, 486, E1. [Google Scholar] [CrossRef]
- Smith, N.; Frew, D.J. A revised historical light curve of Eta Carinae and the timing of close periastron encounters. Mon. Not. R. Astron. Soc. 2011, 415, 2009–2019. [Google Scholar] [CrossRef]
- Smith, N. Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients. Mon. Not. R. Astron. Soc. 2011, 415, 2020–2024. [Google Scholar] [CrossRef]
- de Groot, M. The most luminous stars in the universe. Ir. Astron. J. 1988, 18, 163–170. [Google Scholar]
- Kashi, A. An indication for the binarity of P Cygni from its 17th century eruption. Mon. Not. R. Astron. Soc. 2010, 405, 1924–1929. [Google Scholar] [CrossRef]
- Smith, N.; Hartigan, P. Infrared [Fe II] Emission from P Cygni’s Nebula: Atomic Data, Mass, Kinematics, and the 1600 AD Outburst. Astrophys. J. 2006, 638, 1045–1055. [Google Scholar] [CrossRef]
- Smith, N.; Gehrz, R.D.; Hinz, P.M.; Hoffmann, W.F.; Hora, J.L.; Mamajek, E.E.; Meyer, M.R. Mass and Kinetic Energy of the Homunculus Nebula around η Carinae. Astrophys. J. 2003, 125, 1458–1466. [Google Scholar] [CrossRef]
- Frew, D.J. The Historical Record of η Carinae I. The Visual Light Curve, 1595–2000. J. Astron. Data 2004, 10, 6. [Google Scholar]
- Foley, R.J.; Smith, N.; Ganeshalingam, M.; Li, W.; Chornock, R.; Filippenko, A.V. SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium. Astrophys. J. 2007, 657, L105–L108. [Google Scholar] [CrossRef]
- Smith, N.; Li, W.; Silverman, J.M.; Ganeshalingam, M.; Filippenko, A.V. Luminous blue variable eruptions and related transients: Diversity of progenitors and outburst properties. Mon. Not. R. Astron. Soc. 2011, 415, 773–810. [Google Scholar] [CrossRef]
- Pastorello, A.; Smartt, S.J.; Mattila, S.; Eldridge, J.J.; Young, D.; Itagaki, K.; Yamaoka, H.; Navasardyan, H.; Valenti, S.; Patat, F.; et al. A giant outburst two years before the core-collapse of a massive star. Nature 2007, 447, 829–832. [Google Scholar] [CrossRef]
- Pastorello, A.; Botticella, M.T.; Trundle, C.; Taubenberger, S.; Mattila, S.; Kankare, E.; Elias-Rosa, N.; Benetti, S.; Duszanowicz, G.; Hermansson, L.; et al. Multiple major outbursts from a restless luminous blue variable in NGC 3432. Mon. Not. R. Astron. Soc. 2010, 408, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, A.; Cappellaro, E.; Inserra, C.; Smartt, S.J.; Pignata, G.; Benetti, S.; Valenti, S.; Fraser, M.; Takáts, K.; Benitez, S.; et al. Interacting Supernovae and Supernova Impostors: SN 2009ip, is this the End? Astrophys. J. 2013, 767, 1. [Google Scholar] [CrossRef]
- Pastorello, A.; Kochanek, C.S.; Fraser, M.; Dong, S.; Elias-Rosa, N.; Filippenko, A.V.; Benetti, S.; Cappellaro, E.; Tomasella, L.; Drake, A.J.; et al. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: Another piece of the puzzle. Mon. Not. R. Astron. Soc. 2018, 474, 197–218. [Google Scholar] [CrossRef]
- Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.T.; Bufano, F.; Childress, M.; Mattila, S.; et al. SN 2009ip à la PESSTO: No evidence for core collapse yet. Mon. Not. R. Astron. Soc. 2013, 433, 1312–1337. [Google Scholar] [CrossRef]
- Fraser, M.; Kotak, R.; Pastorello, A.; Jerkstrand, A.; Smartt, S.J.; Chen, T.W.; Childress, M.; Gilmore, G.; Inserra, C.; Kankare, E.; et al. SN 2009ip at late times—An interacting transient at +2 years. Mon. Not. R. Astron. Soc. 2015, 453, 3886–3905. [Google Scholar] [CrossRef]
- Brennan, S.J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H.F.; Chen, T.W.; Eldridge, J.J.; Bose, S.; Brown, P.J.; et al. Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr). Mon. Not. R. Astron. Soc. 2022, 513, 5642–5665. [Google Scholar] [CrossRef]
- Brennan, S.J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H.F.; Chen, T.W.; Eldridge, J.J.; Bose, S.; Brown, P.J.; et al. Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr). Mon. Not. R. Astron. Soc. 2022, 513, 5666–5685. [Google Scholar] [CrossRef]
- Reguitti, A.; Pastorello, A.; Pignata, G.; Fraser, M.; Stritzinger, M.D.; Brennan, S.J.; Cai, Y.Z.; Elias-Rosa, N.; Fugazza, D.; Gutierrez, C.P.; et al. SN 2021foa, a transitional event between a Type IIn (SN 2009ip-like) and a Type Ibn supernova. Astron. Astrophys. 2022, 662, L10. [Google Scholar] [CrossRef]
- Wagner, R.M.; Vrba, F.J.; Henden, A.A.; Canzian, B.; Luginbuhl, C.B.; Filippenko, A.V.; Chornock, R.; Li, W.; Coil, A.L.; Schmidt, G.D.; et al. Discovery and Evolution of an Unusual Luminous Variable Star in NGC 3432 (Supernova 2000ch). Publ. Astron. Soc. Pac. 2004, 116, 326–336. [Google Scholar] [CrossRef]
- Tammann, G.A.; Sandage, A. The Stellar Content and Distance of the Galaxy NGC 2403 IN the M81 Group. Astrophys. J. 1968, 151, 825. [Google Scholar] [CrossRef]
- Weis, K.; Bomans, D.J. SN 2002kg—The brightening of LBV V37 in NGC 2403. Astron. Astrophys. 2005, 429, L13–L16. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Filippenko, A.V.; Chornock, R.; Li, W.; Challis, P.M. Supernova 1954J (Variable 12) in NGC 2403 Unmasked. Publ. Astron. Soc. Pac. 2005, 117, 553–562. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K.; Van Dyk, S.D.; Gordon, M.S. A Tale of Two Impostors: SN2002kg and SN1954J in NGC 2403. Astrophys. J. 2017, 848, 86. [Google Scholar] [CrossRef]
- Tartaglia, L.; Pastorello, A.; Taubenberger, S.; Cappellaro, E.; Maund, J.R.; Benetti, S.; Boles, T.; Bufano, F.; Duszanowicz, G.; Elias-Rosa, N.; et al. Interacting supernovae and supernova impostors. SN 2007sv: The major eruption of a massive star in UGC 5979. Mon. Not. R. Astron. Soc. 2015, 447, 117–131. [Google Scholar] [CrossRef]
- Tartaglia, L.; Elias-Rosa, N.; Pastorello, A.; Benetti, S.; Taubenberger, S.; Cappellaro, E.; Cortini, G.; Granata, V.; Ishida, E.E.O.; Morales-Garoffolo, A.; et al. The Supernova Impostor PSN J09132750+7627410 and Its Progenitor. Astrophys. J. 2016, 823, L23. [Google Scholar] [CrossRef]
- Smith, N. Interacting Supernovae: Types IIn and Ibn. In Handbook of Supernovae; Springer: Berlin/Heidelberg, Germany, 2017; p. 403. ISBN 978-3-319-21845-8. [Google Scholar] [CrossRef]
- Chugai, N.N.; Danziger, I.J. SN 1988Z: Low-mass ejecta colliding with the clumpy wind? Mon. Not. R. Astron. Soc. 1994, 268, 173–180. [Google Scholar] [CrossRef]
- Damineli, A. The 5.52 Year Cycle of Eta Carinae. Astrophys. J. 1996, 460, L49. [Google Scholar] [CrossRef]
- Owocki, S.P.; Gayley, K.G.; Shaviv, N.J. A Porosity-Length Formalism for Photon-Tiring-limited Mass Loss from Stars above the Eddington Limit. Astrophys. J. 2004, 616, 525–541. [Google Scholar] [CrossRef]
- Lamers, H.J.G.L.M.; Fitzpatrick, E.L. The Relationship between the Eddington Limit, the Observed Upper Luminosity Limit for Massive Stars, and the Luminous Blue Variables. Astrophys. J. 1988, 324, 279. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Cantiello, M.; Bildsten, L.; Quataert, E.; Blaes, O.; Stone, J. Outbursts of luminous blue variable stars from variations in the helium opacity. Nature 2018, 561, 498–501. [Google Scholar] [CrossRef] [Green Version]
- Ofek, E.O.; Sullivan, M.; Shaviv, N.J.; Steinbok, A.; Arcavi, I.; Gal-Yam, A.; Tal, D.; Kulkarni, S.R.; Nugent, P.E.; Ben-Ami, S.; et al. Precursors Prior to Type IIn Supernova Explosions are Common: Precursor Rates, Properties, and Correlations. Astrophys. J. 2014, 789, 104. [Google Scholar] [CrossRef]
- Reguitti, A.; Pastorello, A.; Pignata, G.; Benetti, S.; Cappellaro, E.; Turatto, M.; Agliozzo, C.; Bufano, F.; Morrell, N.I.; Olivares E., F.; et al. Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc. Mon. Not. R. Astron. Soc. 2019, 482, 2750–2769. [Google Scholar] [CrossRef]
- Strotjohann, N.L.; Ofek, E.O.; Gal-Yam, A.; Bruch, R.; Schulze, S.; Shaviv, N.; Sollerman, J.; Filippenko, A.V.; Yaron, O.; Fremling, C.; et al. Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophys. J. 2021, 907, 99. [Google Scholar] [CrossRef]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. Annu. Rev. Astron. Astrophys. 2014, 52, 487–528. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Emission from circumstellar interaction in normal Type II supernovae. Astrophys. J. 1994, 420, 268–285. [Google Scholar] [CrossRef]
- Smith, N.; Miller, A.; Li, W.; Filippenko, A.V.; Silverman, J.M.; Howard, A.W.; Nugent, P.; Marcy, G.W.; Bloom, J.S.; Ghez, A.M.; et al. Discovery of Precursor Luminous Blue Variable Outbursts in Two Recent Optical Transients: The Fitfully Variable Missing Links UGC 2773-OT and SN 2009ip. Astrophys. J. 2010, 139, 1451–1467. [Google Scholar] [CrossRef]
- Margutti, R.; Milisavljevic, D.; Soderberg, A.M.; Chornock, R.; Zauderer, B.A.; Murase, K.; Guidorzi, C.; Sanders, N.E.; Kuin, P.; Fransson, C.; et al. A Panchromatic View of the Restless SN 2009ip Reveals the Explosive Ejection of a Massive Star Envelope. Astrophys. J. 2014, 780, 21. [Google Scholar] [CrossRef]
- Smith, N.; Andrews, J.E.; Filippenko, A.V.; Fox, O.D.; Mauerhan, J.C.; Van Dyk, S.D. SN 2009ip after a decade: The luminous blue variable progenitor is now gone. arXiv 2022, arXiv:2205.02896. [Google Scholar] [CrossRef]
- Foley, R.J.; Berger, E.; Fox, O.; Levesque, E.M.; Challis, P.J.; Ivans, I.I.; Rhoads, J.E.; Soderberg, A.M. The Diversity of Massive Star Outbursts. I. Observations of SN2009ip, UGC 2773 OT2009-1, and Their Progenitors. Astrophys. J. 2011, 732, 32. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. Explaining the Supernova Impostor SN 2009ip as Mergerburst. Astrophys. J. 2013, 764, L6. [Google Scholar] [CrossRef] [Green Version]
- Mauerhan, J.C.; Smith, N.; Silverman, J.M.; Filippenko, A.V.; Morgan, A.N.; Cenko, S.B.; Ganeshalingam, M.; Clubb, K.I.; Bloom, J.S.; Matheson, T.; et al. SN 2011ht: Confirming a class of interacting supernovae with plateau light curves (Type IIn-P). Mon. Not. R. Astron. Soc. 2013, 431, 2599–2611. [Google Scholar] [CrossRef]
- Graham, M.L.; Sand, D.J.; Valenti, S.; Howell, D.A.; Parrent, J.; Halford, M.; Zaritsky, D.; Bianco, F.; Rest, A.; Dilday, B. Clues to the Nature of SN 2009ip from Photometric and Spectroscopic Evolution to Late Times. Astrophys. J. 2014, 787, 163. [Google Scholar] [CrossRef]
- Chugai, N. Supernova 2009ip outbursts in 2012: From scenario to model. arXiv 2022, arXiv:2209.05204. [Google Scholar]
- Woosley, S.E.; Blinnikov, S.; Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 2007, 450, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Woosley, S.E. Pulsational Pair-instability Supernovae. Astrophys. J. 2017, 836, 244. [Google Scholar] [CrossRef]
- Kashi, A.; Soker, N.; Moskovitz, N. Powering the second 2012 outburst of SN 2009ip by repeating binary interaction. Mon. Not. R. Astron. Soc. 2013, 436, 2484–2491. [Google Scholar] [CrossRef]
- Pessi, T.; Prieto, J.L.; Monard, B.; Kochanek, C.S.; Bock, G.; Drake, A.J.; Fox, O.D.; Parker, S.; Stevance, H.F. Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event. Astrophys. J. 2022, 928, 138. [Google Scholar] [CrossRef]
- Elias-Rosa, N.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Taubenberger, S.; Terreran, G.; Fraser, M.; Brown, P.J.; Tartaglia, L.; Morales-Garoffolo, A.; et al. Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275). Mon. Not. R. Astron. Soc. 2016, 463, 3894–3920. [Google Scholar] [CrossRef]
- Thöne, C.C.; de Ugarte Postigo, A.; Leloudas, G.; Gall, C.; Cano, Z.; Maeda, K.; Schulze, S.; Campana, S.; Wiersema, K.; Groh, J.; et al. SN 2015bh: NGC 2770’s 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star? Astron. Astrophys. 2017, 599, A129. [Google Scholar] [CrossRef]
- Tartaglia, L.; Pastorello, A.; Sullivan, M.; Baltay, C.; Rabinowitz, D.; Nugent, P.; Drake, A.J.; Djorgovski, S.G.; Gal-Yam, A.; Fabrika, S.; et al. Interacting supernovae and supernova impostors. LSQ13zm: An outburst heralds the death of a massive star. Mon. Not. R. Astron. Soc. 2016, 459, 1039–1059. [Google Scholar] [CrossRef]
- Jencson, J.E.; Sand, D.J.; Andrews, J.E.; Smith, N.; Strader, J.; Aghakhanloo, M.; Pearson, J.; Valenti, S. Hubble Space Telescope Imaging Reveals that SN 2015bh is Much Fainter than its Progenitor. arXiv 2022, arXiv:2206.02816. [Google Scholar] [CrossRef]
- Brennan, S.J.; Elias-Rosa, N.; Fraser, M.; Van Dyk, S.D.; Lyman, J.D. The impostor revealed: SN 2016jbu was a terminal explosion. arXiv 2022, arXiv:2206.06365. [Google Scholar] [CrossRef]
- Pastorello, A.; Quimby, R.M.; Smartt, S.J.; Mattila, S.; Navasardyan, H.; Crockett, R.M.; Elias-Rosa, N.; Mondol, P.; Wheeler, J.C.; Young, D.R. Massive stars exploding in a He-rich circumstellar medium—II. The transitional case of SN 2005la. Mon. Not. R. Astron. Soc. 2008, 389, 131–140. [Google Scholar] [CrossRef]
- Arnett, W.D.; Meakin, C. Turbulent Cells in Stars: Fluctuations in Kinetic Energy and Luminosity. Astrophys. J. 2011, 741, 33. [Google Scholar] [CrossRef]
- Quataert, E.; Shiode, J. Wave-driven mass loss in the last year of stellar evolution: Setting the stage for the most luminous core-collapse supernovae. Mon. Not. R. Astron. Soc. 2012, 423, L92–L96. [Google Scholar] [CrossRef]
- Shiode, J.H.; Quataert, E. Setting the Stage for Circumstellar Interaction in Core-Collapse Supernovae. II. Wave-driven Mass Loss in Supernova Progenitors. Astrophys. J. 2014, 780, 96. [Google Scholar] [CrossRef]
- Kashi, A.; Frankowski, A.; Soker, N. NGC 300 OT2008-1 as a Scaled-down Version of the Eta Carinae Great Eruption. Astrophys. J. 2010, 709, L11–L15. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Bond, H.E.; Bedin, L.R.; Bonanos, A.Z.; Davidson, K.; Berto Monard, L.A.G.; Prieto, J.L.; Walter, F.M. The Photometric and Spectral Evolution of the 2008 Luminous Optical Transient in NGC 300. Astrophys. J. 2011, 743, 118. [Google Scholar] [CrossRef]
- Botticella, M.T.; Pastorello, A.; Smartt, S.J.; Meikle, W.P.S.; Benetti, S.; Kotak, R.; Cappellaro, E.; Crockett, R.M.; Mattila, S.; Sereno, M.; et al. SN 2008S: An electron-capture SN from a super-AGB progenitor? Mon. Not. R. Astron. Soc. 2009, 398, 1041–1068. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Pastorello, A.; Fraser, M.; Botticella, M.T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; et al. AT 2017be—A new member of the class of intermediate-luminosity red transients. Mon. Not. R. Astron. Soc. 2018, 480, 3424–3445. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Pastorello, A.; Fraser, M.; Botticella, M.T.; Elias-Rosa, N.; Wang, L.Z.; Kotak, R.; Benetti, S.; Cappellaro, E.; Turatto, M.; et al. Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions. Astron. Astrophys. 2021, 654, A157. [Google Scholar] [CrossRef]
- Adams, S.M.; Kochanek, C.S.; Prieto, J.L.; Dai, X.; Shappee, B.J.; Stanek, K.Z. Almost gone: SN 2008S and NGC 300 2008OT-1 are fainter than their progenitors. Mon. Not. R. Astron. Soc. 2016, 460, 1645–1657. [Google Scholar] [CrossRef]
- Pastorello, A.; Zampieri, L.; Turatto, M.; Cappellaro, E.; Meikle, W.P.S.; Benetti, S.; Branch, D.; Baron, E.; Patat, F.; Armstrong, M.; et al. Low-luminosity Type II supernovae: Spectroscopic and photometric evolution. Mon. Not. R. Astron. Soc. 2004, 347, 74–94. [Google Scholar] [CrossRef]
- Spiro, S.; Pastorello, A.; Pumo, M.L.; Zampieri, L.; Turatto, M.; Smartt, S.J.; Benetti, S.; Cappellaro, E.; Valenti, S.; Agnoletto, I.; et al. Low luminosity Type II supernovae—II. Pointing towards moderate mass precursors. Mon. Not. R. Astron. Soc. 2014, 439, 2873–2892. [Google Scholar] [CrossRef]
- Reguitti, A.; Pumo, M.L.; Mazzali, P.A.; Pastorello, A.; Pignata, G.; Elias-Rosa, N.; Prentice, S.J.; Reynolds, T.; Benetti, S.; Rodrìguez, O.; et al. Low-luminosity Type II supernovae—III. SN 2018hwm, a faint event with an unusually long plateau. Mon. Not. R. Astron. Soc. 2021, 501, 1059–1071. [Google Scholar] [CrossRef]
- Valerin, G.; Pumo, M.L.; Pastorello, A.; Reguitti, A.; Elias-Rosa, N.; Gútierrez, C.P.; Kankare, E.; Fraser, M.; Mazzali, P.A.; Howell, D.A.; et al. Low luminosity Type II supernovae—IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class. Mon. Not. R. Astron. Soc. 2022, 513, 4983–4999. [Google Scholar] [CrossRef]
- Nomoto, K. Evolution of 8-10 solar mass stars toward electron capture supernovae. I—Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 1984, 277, 791–805. [Google Scholar] [CrossRef]
- Poelarends, A.J.T.; Herwig, F.; Langer, N.; Heger, A. The Supernova Channel of Super-AGB Stars. Astrophys. J. 2008, 675, 614–625. [Google Scholar] [CrossRef]
- Pumo, M.L.; Turatto, M.; Botticella, M.T.; Pastorello, A.; Valenti, S.; Zampieri, L.; Benetti, S.; Cappellaro, E.; Patat, F. EC-SNe from Super-Asymptotic Giant Branch Progenitors: Theoretical Models Versus Observations. Astrophys. J. 2009, 705, L138–L142. [Google Scholar] [CrossRef]
- Moriya, T.J.; Tominaga, N.; Langer, N.; Nomoto, K.; Blinnikov, S.I.; Sorokina, E.I. Electron-capture supernovae exploding within their progenitor wind. Astron. Astrophys. 2014, 569, A57. [Google Scholar] [CrossRef]
- Doherty, C.L.; Gil-Pons, P.; Siess, L.; Lattanzio, J.C.; Lau, H.H.B. Super- and massive AGB stars—IV. Final fates—Initial-to-Final mass relation. Mon. Not. R. Astron. Soc. 2015, 446, 2599–2612. [Google Scholar] [CrossRef] [Green Version]
- Janka, H.T.; Müller, B.; Kitaura, F.S.; Buras, R. Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae. Astron. Astrophys. 2008, 485, 199–208. [Google Scholar] [CrossRef]
- Wanajo, S.; Nomoto, K.; Janka, H.T.; Kitaura, F.S.; Müller, B. Nucleosynthesis in Electron Capture Supernovae of Asymptotic Giant Branch Stars. Astrophys. J. 2009, 695, 208–220. [Google Scholar] [CrossRef]
- Thompson, T.A.; Prieto, J.L.; Stanek, K.Z.; Kistler, M.D.; Beacom, J.F.; Kochanek, C.S. A New Class of Luminous Transients and a First Census of their Massive Stellar Progenitors. Astrophys. J. 2009, 705, 1364–1384. [Google Scholar] [CrossRef]
- Jencson, J.E.; Adams, S.M.; Bond, H.E.; van Dyk, S.D.; Kasliwal, M.M.; Bally, J.; Blagorodnova, N.; De, K.; Fremling, C.; Yao, Y.; et al. Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. APJ 2019, 880, L20. [Google Scholar] [CrossRef]
- Bond, H.E.; Bedin, L.R.; Bonanos, A.Z.; Humphreys, R.M.; Monard, L.A.G.B.; Prieto, J.L.; Walter, F.M. The 2008 Luminous Optical Transient in the Nearby Galaxy NGC 300. Astrophys. J. 2009, 695, L154–L158. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Pastorello, A.; Fraser, M.; Prentice, S.J.; Reynolds, T.M.; Cappellaro, E.; Benetti, S.; Morales-Garoffolo, A.; Reguitti, A.; Elias-Rosa, N.; et al. The transitional gap transient AT 2018hso: New insights into the luminous red nova phenomenon. Astron. Astrophys. 2019, 632, L6. [Google Scholar] [CrossRef]
- Prieto, J.L.; Sellgren, K.; Thompson, T.A.; Kochanek, C.S. A Spitzer/IRS Spectrum of the 2008 Luminous Transient in NGC 300: Connection to Proto-Planetary Nebulae. Astrophys. J. 2009, 705, 1425–1432. [Google Scholar] [CrossRef]
- Ohsawa, R.; Sakon, I.; Onaka, T.; Tanaka, M.; Moriya, T.; Nozawa, T.; Maeda, K.; Nomoto, K.; Tominaga, N.; Usui, F.; et al. Observations of the Optical Transient in NGC 300 with AKARI/IRC: Possibilities of Asymmetric Dust Formation. Astrophys. J. 2010, 718, 1456–1459. [Google Scholar] [CrossRef]
- Williams, S.C.; Jones, D.; Pessev, P.; Geier, S.; Corradi, R.L.M.; Hook, I.M.; Darnley, M.J.; Pejcha, O.; Núñez, A.; Meingast, S.; et al. AT 2019abn: Multi-wavelength observations over the first 200 days. Astron. Astrophys. 2020, 637, A20. [Google Scholar] [CrossRef]
- Stritzinger, M.D.; Taddia, F.; Fraser, M.; Tauris, T.M.; Suntzeff, N.B.; Contreras, C.; Drybye, S.; Galbany, L.; Holmbo, S.; Morrell, N.; et al. The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120. Astron. Astrophys. 2020, 639, A103. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. The energy source of intermediate luminosity optical transients. arXiv 2011, arXiv:1107.3454. [Google Scholar]
- Tsuna, D.; Ishii, A.; Kuriyama, N.; Kashiyama, K.; Shigeyama, T. Intermediate Luminosity Red Transients by Black Holes Born from Erupting Massive Stars. Astrophys. J. 2020, 897, L44. [Google Scholar] [CrossRef]
- Kozyreva, A.; Baklanov, P.; Jones, S.; Stockinger, G.; Janka, H.T. Synthetic observables for electron-capture supernovae and low-mass core collapse supernovae. Mon. Not. R. Astron. Soc. 2021, 503, 797–814. [Google Scholar] [CrossRef]
- Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M.; Mattila, S.; Smartt, S.J.; Bruce, A.; Chambers, K.C.; Elias-Rosa, N.; Flewelling, H. On the triple peaks of SNHunt248 in NGC 5806. Astron. Astrophys. 2015, 581, L4. [Google Scholar] [CrossRef]
- Li, W.; Filippenko, A.V.; Van Dyk, S.D.; Hu, J.; Qiu, Y.; Modjaz, M.; Leonard, D.C. A Hubble Space Telescope Snapshot Survey of Nearby Supernovae. Publ. Astron. Soc. Pac. 2002, 114, 403–415. [Google Scholar] [CrossRef]
- Tully, R.B.; Rizzi, L.; Shaya, E.J.; Courtois, H.M.; Makarov, D.I.; Jacobs, B.A. The Extragalactic Distance Database. Astrophys. J. 2009, 138, 323–331. [Google Scholar] [CrossRef]
- Mason, E.; Diaz, M.; Williams, R.E.; Preston, G.; Bensby, T. The peculiar nova V1309 Scorpii/nova Scorpii 2008. A candidate twin of V838 Monocerotis. Astron. Astrophys. 2010, 516, A108. [Google Scholar] [CrossRef]
- Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
- Sorce, J.G.; Tully, R.B.; Courtois, H.M.; Jarrett, T.H.; Neill, J.D.; Shaya, E.J. From Spitzer Galaxy photometry to Tully-Fisher distances. Mon. Not. R. Astron. Soc. 2014, 444, 527–541. [Google Scholar] [CrossRef]
- Adams, S.M.; Kochanek, C.S. LOSS’s first supernova? New limits on the ‘impostor’ SN 1997bs. Mon. Not. R. Astron. Soc. 2015, 452, 2195–2207. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Van Dyk, S.D.; Graham, M.L.; Zheng, W.; Clubb, K.I.; Filippenko, A.V.; Valenti, S.; Brown, P.; Smith, N.; Howell, D.A.; et al. SN Hunt 248: A super-Eddington outburst from a massive cool hypergiant. Mon. Not. R. Astron. Soc. 2015, 447, 1922–1934. [Google Scholar] [CrossRef] [Green Version]
- Goranskij, V.P.; Barsukova, E.A.; Spiridonova, O.I.; Valeev, A.F.; Fatkhullin, T.A.; Moskvitin, A.S.; Vozyakova, O.V.; Cheryasov, D.V.; Safonov, B.S.; Zharova, A.V.; et al. Photometry and spectroscopy of the luminous red nova PSNJ14021678+5426205 in the galaxy M101. Astrophys. Bull. 2016, 71, 82–94. [Google Scholar] [CrossRef]
- Smith, N.; Andrews, J.E.; Van Dyk, S.D.; Mauerhan, J.C.; Kasliwal, M.M.; Bond, H.E.; Filippenko, A.V.; Clubb, K.I.; Graham, M.L.; Perley, D.A.; et al. Massive star mergers and the recent transient in NGC 4490: A more massive cousin of V838 Mon and V1309 Sco. Mon. Not. R. Astron. Soc. 2016, 458, 950–962. [Google Scholar] [CrossRef]
- Blagorodnova, N.; Kotak, R.; Polshaw, J.; Kasliwal, M.M.; Cao, Y.; Cody, A.M.; Doran, G.B.; Elias-Rosa, N.; Fraser, M.; Fremling, C.; et al. Common Envelope Ejection for a Luminous Red Nova in M101. Astrophys. J. 2017, 834, 107. [Google Scholar] [CrossRef]
- Pastorello, A.; Chen, T.W.; Cai, Y.Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E.A.; Benetti, S.; Berton, M.; Bose, S. The evolution of luminous red nova AT 2017jfs in NGC 4470. Astron. Astrophys. 2019, 625, L8. [Google Scholar] [CrossRef]
- Pastorello, A.; Mason, E.; Taubenberger, S.; Fraser, M.; Cortini, G.; Tomasella, L.; Botticella, M.T.; Elias-Rosa, N.; Kotak, R.; Smartt, S.J.; et al. Luminous red novae: Stellar mergers or giant eruptions? Astron. Astrophys. 2019, 630, A75. [Google Scholar] [CrossRef]
- Stritzinger, M.D.; Taddia, F.; Fraser, M.; Tauris, T.M.; Contreras, C.; Drybye, S.; Galbany, L.; Holmbo, S.; Morrell, N.; Pastorello, A.; et al. The Carnegie Supernova Project II. Observations of the luminous red nova AT 2014ej. Astron. Astrophys. 2020, 639, A104. [Google Scholar] [CrossRef]
- Pastorello, A.; Fraser, M.; Valerin, G.; Reguitti, A.; Itagaki, K.; Ochner, P.; Williams, S.C.; Jones, D.; Munday, J.; Smartt, S.J.; et al. Forbidden hugs in pandemic times. I. Luminous red nova AT 2019zhd, a new merger in M 31. Astron. Astrophys. 2021, 646, A119. [Google Scholar] [CrossRef]
- Pastorello, A.; Valerin, G.; Fraser, M.; Elias-Rosa, N.; Valenti, S.; Reguitti, A.; Mazzali, P.A.; Amaro, R.C.; Andrews, J.E.; Dong, Y.; et al. Forbidden hugs in pandemic times. II. The luminous red nova variety: AT 2020hat and AT 2020kog. Astron. Astrophys. 2021, 647, A93. [Google Scholar] [CrossRef]
- Blagorodnova, N.; Klencki, J.; Pejcha, O.; Vreeswijk, P.M.; Bond, H.E.; Burdge, K.B.; De, K.; Fremling, C.; Gehrz, R.D.; Jencson, J.E.; et al. The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. Astron. Astrophys. 2021, 653, A134. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Pastorello, A.; Fraser, M.; Wang, X.F.; Filippenko, A.V.; Reguitti, A.; Patra, K.C.; Goranskij, V.P.; Barsukova, E.A.; Brink, T.G.; et al. Observations of the luminous red nova AT 2021biy in the nearby galaxy NGC 4631. arXiv 2022, arXiv:2207.00734. [Google Scholar]
- Pastorello, A.; Valerin, G.; Fraser, M.; Reguitti, A.; Elias-Rosa, N.; Filippenko, A.V.; Rojas-Bravo, C.; Tartaglia, L.; Reynolds, T.M.; Valenti, S.; et al. Panchromatic evolution of three luminous red novae: Forbidden hugs in pandemic times—IV. arXiv 2022, arXiv:2208.02782. [Google Scholar]
- Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; et al. V1309 Scorpii: Merger of a contact binary. Astron. Astrophys. 2011, 528, A114. [Google Scholar] [CrossRef]
- Pejcha, O. Burying a Binary: Dynamical Mass Loss and a Continuous Optically thick Outflow Explain the Candidate Stellar Merger V1309 Scorpii. Astrophys. J. 2014, 788, 22. [Google Scholar] [CrossRef]
- Pejcha, O.; Metzger, B.D.; Tomida, K. Cool and luminous transients from mass-losing binary stars. Mon. Not. R. Astron. Soc. 2016, 455, 4351–4372. [Google Scholar] [CrossRef]
- Pejcha, O.; Metzger, B.D.; Tomida, K. Binary stellar mergers with marginally bound ejecta: Excretion discs, inflated envelopes, outflows, and their luminous transients. Mon. Not. R. Astron. Soc. 2016, 461, 2527–2539. [Google Scholar] [CrossRef]
- Goranskij, V.P.; Shugarov, S.Y.; Barsukova, E.A.; Kroll, P. V838 Mon Before and After Its Outburst. Inf. Bull. Var. Stars 2004, 5511, 1. [Google Scholar]
- Popov, D.V. An Analytical Model for the Plateau Stage of Type II Supernovae. Astrophys. J. 1993, 414, 712. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Avendano Nandez, J.L.; Lombardi, J.C. Identification of the Long-Sought Common-Envelope Events. Science 2013, 339, 433. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: Discovery, light curve, hydrodynamics and evolution. Mon. Not. R. Astron. Soc. 2017, 470, 2339–2350. [Google Scholar] [CrossRef]
- MacLeod, M.; Macias, P.; Ramirez-Ruiz, E.; Grindlay, J.; Batta, A.; Montes, G. Lessons from the Onset of a Common Envelope Episode: The Remarkable M31 2015 Luminous Red Nova Outburst. APJ 2017, 835, 282. [Google Scholar] [CrossRef]
- Metzger, B.D.; Pejcha, O. Shock-powered light curves of luminous red novae as signatures of pre-dynamical mass-loss in stellar mergers. Mon. Not. R. Astron. Soc. 2017, 471, 3200–3211. [Google Scholar] [CrossRef]
- Matsumoto, T.; Metzger, B.D. Light Curve Model for Luminous Red Novae and Inferences about the Ejecta of Stellar Mergers. arXiv 2022, arXiv:2202.10478. [Google Scholar]
- Kochanek, C.S.; Adams, S.M.; Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 2014, 443, 1319–1328. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Van Dyk, S.D.; Johansson, J.; Fox, O.D.; Filippenko, A.V.; Graham, M.L. The dusty aftermath of SN Hunt 248: Merger-burst remnant? Mon. Not. R. Astron. Soc. 2018, 473, 3765–3775. [Google Scholar] [CrossRef] [Green Version]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed]
- Howitt, G.; Stevenson, S.; Vigna-Gómez, A.; Justham, S.; Ivanova, N.; Woods, T.E.; Neijssel, C.J.; Mandel, I. Luminous Red Novae: Population models and future prospects. Mon. Not. R. Astron. Soc. 2020, 492, 3229–3240. [Google Scholar] [CrossRef]
- Iben, I., Jr.; Tutukov, A.V. Rare Thermonuclear Explosions in Short-Period Cataclysmic Variables, with Possible Application to the Nova-like Red Variable in the Galaxy M31. Astrophys. J. 1992, 389, 369. [Google Scholar] [CrossRef]
- Munari, U.; Henden, A.; Kiyota, S.; Laney, D.; Marang, F.; Zwitter, T.; Corradi, R.L.M.; Desidera, S.; Marrese, P.M.; Giro, E.; et al. The mysterious eruption of V838 Mon. Astron. Astrophys. 2002, 389, L51–L56. [Google Scholar] [CrossRef]
- Kimeswenger, S.; Lederle, C.; Schmeja, S.; Armsdorfer, B. The peculiar variable V838 Mon. Mon. Not. R. Astron. Soc. 2002, 336, L43–L47. [Google Scholar] [CrossRef]
- Soker, N.; Tylenda, R. Main-Sequence Stellar Eruption Model for V838 Monocerotis. Astrophys. J. 2003, 582, L105–L108. [Google Scholar] [CrossRef]
- Arcavi, I.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; Poznanski, D.; Kasen, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 2017, 551, 64–66. [Google Scholar] [CrossRef]
- Smartt, S.J.; Chen, T.W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, F.W.; Wang, Y.Z.; Shen, Z.Q.; Liang, Y.F.; Li, X.; Liao, N.H.; Jin, Z.P.; Yuan, Q.; Zou, Y.C.; et al. The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics. Astrophys. J. 2017, 851, L18. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, L.D.; Dai, Z.G.; Wu, X.F. Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A. Astrophys. J. 2017, 850, L41. [Google Scholar] [CrossRef] [Green Version]
- Lovegrove, E.; Woosley, S.E. Very Low Energy Supernovae from Neutrino Mass Loss. Astrophys. J. 2013, 769, 109. [Google Scholar] [CrossRef]
- Bianco, F.B.; Ivezić, Ž.; Jones, R.L.; Graham, M.L.; Marshall, P.; Saha, A.; Strauss, M.A.; Yoachim, P.; Ribeiro, T.; Anguita, T.; et al. Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. ApJS 2022, 258, 1. [Google Scholar] [CrossRef]
- Breivik, K.; Connolly, A.J.; Ford, K.E.S.; Jurić, M.; Mandelbaum, R.; Miller, A.A.; Norman, D.; Olsen, K.; O’Mullane, W.; Price-Whelan, A.; et al. From Data to Software to Science with the Rubin Observatory LSST. arXiv 2022, arXiv:2208.02781. [Google Scholar]
- Hambleton, K.M.; Bianco, F.B.; Street, R.; Bell, K.; Buckley, D.; Graham, M.; Hernitschek, N.; Lund, M.B.; Mason, E.; Pepper, J.; et al. Rubin Observatory LSST Transients and Variable Stars Roadmap. arXiv 2022, arXiv:2208.04499. [Google Scholar]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Reguitti, A.; Valerin, G.; Wang, X. Gap Transients Interacting with Circumstellar Medium. Universe 2022, 8, 493. https://doi.org/10.3390/universe8100493
Cai Y, Reguitti A, Valerin G, Wang X. Gap Transients Interacting with Circumstellar Medium. Universe. 2022; 8(10):493. https://doi.org/10.3390/universe8100493
Chicago/Turabian StyleCai, Yongzhi, Andrea Reguitti, Giorgio Valerin, and Xiaofeng Wang. 2022. "Gap Transients Interacting with Circumstellar Medium" Universe 8, no. 10: 493. https://doi.org/10.3390/universe8100493
APA StyleCai, Y., Reguitti, A., Valerin, G., & Wang, X. (2022). Gap Transients Interacting with Circumstellar Medium. Universe, 8(10), 493. https://doi.org/10.3390/universe8100493