# Weak Field Limit for Embedding Gravity

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Linearization of Regge–Teitelboim Equations

## 3. Solving of the Linearized Equations

## 4. Accounting for Equations in the Next Order

## 5. The Case of Spherical Symmetry

## 6. Explicit Unfolded Spherically Symmetric Embedding

## 7. Inverse Problem

## 8. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Regge, T.; Teitelboim, C. General relativity à la string: A progress report. In Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 7–12 July 1975; pp. 77–88. [Google Scholar]
- Deser, S.; Pirani, F.A.E.; Robinson, D.C. New embedding model of general relativity. Phys. Rev. D
**1976**, 14, 3301–3303. [Google Scholar] - Tapia, V. Gravitation a la string. Class. Quant. Grav.
**1989**, 6, L49. [Google Scholar] - Maia, M.D. On the integrability conditions for extended objects. Class. Quant. Grav.
**1989**, 6, 173–183. [Google Scholar] - Franke, V.A.; Tapia, V. The ADM Lagrangian in extrinsic gravity. Nuovo Cimento B
**1992**, 107, 611. [Google Scholar] - Estabrook, F.B.; Robinson, R.S.; Wahlquist, H.R. Constraint-free theories of gravitation. Class. Quant. Grav.
**1999**, 16, 911–918. [Google Scholar] - Karasik, D.; Davidson, A. Geodetic Brane Gravity. Phys. Rev. D
**2003**, 67, 064012. [Google Scholar] - Cordero, R.; Molgado, A.; Rojas, E. Ostrogradski approach for the Regge-Teitelboim type cosmology. Phys. Rev. D
**2009**, 79, 024024. [Google Scholar] - Paston, S.A. Gravity as a field theory in flat space-time. Theor. Math. Phys.
**2011**, 169, 1611–1619. [Google Scholar] - Faddeev, L.D. New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys.
**2011**, 166, 279–290. [Google Scholar] - Paston, S.A.; Sheykin, A.A. From the Embedding Theory to General Relativity in a result of inflation. Int. J. Mod. Phys. D
**2012**, 21, 1250043. [Google Scholar] - Paston, S.A.; Franke, V.A. Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity. Theor. Math. Phys.
**2007**, 153, 1582–1596. [Google Scholar] - Undagoitia, T.M.; Rauch, L. Dark matter direct-detection experiments. J. Phys. G Nucl. Part. Phys.
**2015**, 43, 013001. [Google Scholar] - Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys.
**2016**, 57, 496–525. [Google Scholar] - Pavsic, M. On The Quantization Of Gravity By Embedding Space-Time In A Higher Dimensional Space. Class. Quant. Grav.
**1985**, 2, 869. [Google Scholar] - Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. J. High Energy Phys.
**2013**, 2013, 135. [Google Scholar] - Golovnev, A. On the recently proposed mimetic Dark Matter. Phys. Lett. B
**2014**, 728, 39–40. [Google Scholar] - Paston, S.A.; Zaitseva, T.I. Nontrivial isometric embeddings for flat spaces. Universe
**2021**, 7, 477. [Google Scholar] - Paston, S.A. Non-relativistic limit of embedding gravity as General Relativity with dark matter. Universe
**2020**, 6, 163. [Google Scholar] - Paston, S.A.; Sheykin, A.A. Embeddings for Schwarzschild metric: Classification and new results. Class. Quant. Grav.
**2012**, 29, 095022. [Google Scholar] - Burkert, A. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J.
**1995**, 447, L25. [Google Scholar] - Di Paolo, C.; Salucci, P. Fundamental properties of the dark and the luminous matter from Low Surface Brightness discs. arXiv
**2020**, arXiv:2005.03520. [Google Scholar]

**Figure 1.**Numerically constructed solutions with different initial data: (

**a**) $f=0$, ${f}^{\prime}=0.025$, ${f}^{\u2033}=-0.1$; (

**b**) $f=0.1$, ${f}^{\prime}=0.02$, ${f}^{\u2033}=-0.1$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kuptsov, S.; Ioffe, M.; Manida, S.; Paston, S.
Weak Field Limit for Embedding Gravity. *Universe* **2022**, *8*, 635.
https://doi.org/10.3390/universe8120635

**AMA Style**

Kuptsov S, Ioffe M, Manida S, Paston S.
Weak Field Limit for Embedding Gravity. *Universe*. 2022; 8(12):635.
https://doi.org/10.3390/universe8120635

**Chicago/Turabian Style**

Kuptsov, Stanislav, Mikhail Ioffe, Sergey Manida, and Sergey Paston.
2022. "Weak Field Limit for Embedding Gravity" *Universe* 8, no. 12: 635.
https://doi.org/10.3390/universe8120635