# The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Dirac Equation in the Schwarzschild BH Metric

## 3. Non Existence of Fermionic Bound States in the Schwarzschild BH Metric

## 4. A Deficiency Index Approach

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Zecca, A. Spin 1/2 bound states in Schwarzschild geometry. Adv. Studies Theor. Phys.
**2007**, 1, 271–279. [Google Scholar] - Coatescu, I.I. Approximative analytic solutions of the Dirac equation in Schwarzschild spacetime. Mod. Phys. Lett. A
**2007**, 22, 2493–2498. [Google Scholar] [CrossRef] - Lasenby, A.; Doran, C.; Pritchard, J.; Caceres, A.; Dolan, S. Bound states and decay times of fermions in a Schwarzschild black hole background. Phys. Rev. D
**2005**, 72, 105014. [Google Scholar] [CrossRef] - Finster, F.; Smoller, J.; Yau, S.T. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background. J. Math. Phys.
**2000**, 41, 2173–2194. [Google Scholar] [CrossRef] - Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T. Non-Existence of Time-Periodic Solutions of the Dirac Equation in an Axisymmetric Black Hole Geometry. Commun. Pure Appl. Math.
**2000**, 53, 902–903. [Google Scholar] [CrossRef] - Schmid, H. Bound State Solutions of the Dirac Equation in the extreme Kerr Geometry. Math. Nachr.
**2004**, 274–275, 117–129. [Google Scholar] [CrossRef] - Batic, D.; Nowakowski, M. On the bound states of the Dirac equation in the extreme Kerr metric. Class. Quantum Gravity
**2008**, 25, 225022. [Google Scholar] [CrossRef] - Lesch, M.; Malamud, M. On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ.
**2005**, 189, 556–615. [Google Scholar] [CrossRef] - Belgiorno, F.; Cacciatori, S.L. Absence of Normalizable Time-periodic Solutions for the Dirac Equation in Kerr–Newman-dS black hole background. J. Phys. A
**2009**, 42, 135207. [Google Scholar] [CrossRef] - Finster, F.; Kamran, N.; Smoller, J.; Yau, S.T. The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys.
**2003**, 7, 25–52. [Google Scholar] [CrossRef] - Batic, D.; Schmid, H. The Dirac propagator in the Kerr–Newman metric. Prog. Theor. Phys
**2006**, 116, 517–544. [Google Scholar] [CrossRef] - Schäfke, R.; Schmidt, D. The connection problem for general linear ordinary differential equations at two regular singular points with applications to the theory of special functions. J. Math. Anal.
**1980**, 11, 848–862. [Google Scholar] [CrossRef] - Schäfke, R. A connection problem for a regular and an irregular singular point of complex ordinary differential equations. J. Math. Anal.
**1984**, 15, 253–271. [Google Scholar] [CrossRef] - Batic, D.; Schmid, H.; Winklmeier, M. The generalized Heun equation in QFT in curved space-times. J. Phys. A
**2006**, 39, 12559–12564. [Google Scholar] [CrossRef] - D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1999. [Google Scholar]
- Page, D. Dirac equation around a charged, rotating black hole. Phys. Rev. D
**1976**, 14, 1509. [Google Scholar] [CrossRef] - Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Zecca, A. Dirac equation in Schwarzschild geometry. Nuovo Cimento
**1998**, 30, 1309–1315. [Google Scholar] - Carter, B. Hamilton-Jakobi and Schrödinger separable solutions of Einstein equations. Commun. Math. Phys.
**1968**, 10, 280–310. [Google Scholar] - Carter, B. Black Hole Equilibrium States. In Black Holes/Les Astres Occlus; de Witt, C., de Witt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Carter, B. Gravitation in Astrophysics; NATO ASI Series B; Plenum Press: New York, NY, USA, 1987; Volume 156. [Google Scholar]
- Davis, T.M. A Simple Application of the Newman-Penrose Spin Coefficient Formalism. I. Int. J. Theor. Phys.
**1976**, 15, 315–317. [Google Scholar] [CrossRef] - Batic, D.; Schmid, H.; Winklmeier, M. On the eigenvalues of the Chandrasekhar-Page angular equation. J. Math. Phys.
**2005**, 46. [Google Scholar] [CrossRef] - Neumark, M.A. Lineare Differentialoperatoren; Akademie Verlag: Bremen, Germany, 1960. [Google Scholar]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math.
**1996**, 5, 329–359. [Google Scholar] [CrossRef] - Dubinov, A.E.; Dubinova, I.D.; Sajkov, S.K. W-Funkciya Lamberta i ee Primenenie v Mathematicheskix Zadachax Fiziki; RFYaTs-VNIIEF: Sarov, Russia, 2006. [Google Scholar]
- Flügge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kelkar, N.G.; Garcia Daza, F.; Nowakowski, M. Determining the size of the proton. Nucl. Phys.
**2012**, 864, 382–398. [Google Scholar] [CrossRef] - Bedoya Fiero, D.; Kelkar, N.G.; Nowakowski, M. Lorentz contracted proton. J. High Energy Phys.
**2015**, 2015, 215. [Google Scholar] [CrossRef]

Vierbein | κ | σ | λ | ν | ρ | μ | τ | π | ϵ | γ | β | α |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Kinnersley (15) | 0 | 0 | 0 | 0 | $-\frac{1}{r}$ | $\frac{2M-r}{2{r}^{2}}$ | 0 | 0 | 0 | $\frac{M}{2{r}^{2}}$ | $\frac{\mathrm{cot}\vartheta}{2\sqrt{2}r}$ | $-\beta $ |

Carter (17) | 0 | 0 | 0 | 0 | $\frac{\sqrt{{\mathrm{\Delta}}_{r}}}{{r}^{2}\sqrt{2}}$ | ρ | 0 | 0 | $-\frac{M}{2\sqrt{2}r\sqrt{{\mathrm{\Delta}}_{r}}}$ | ϵ | $\frac{\mathrm{cot}\vartheta}{2\sqrt{2}r}$ | $-\beta $ |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Batic, D.; Nowakowski, M.; Morgan, K. The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric. *Universe* **2016**, *2*, 31.
https://doi.org/10.3390/universe2040031

**AMA Style**

Batic D, Nowakowski M, Morgan K. The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric. *Universe*. 2016; 2(4):31.
https://doi.org/10.3390/universe2040031

**Chicago/Turabian Style**

Batic, Davide, Marek Nowakowski, and Kirk Morgan. 2016. "The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric" *Universe* 2, no. 4: 31.
https://doi.org/10.3390/universe2040031