Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Dirac equation in curved spacetime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3323 KiB  
Article
Curvature-Induced Electrical Properties of Two-Dimensional Electrons on Carbon Nanotube Springs
by Jakkapong Charoenpakdee, Artit Hutem and Sutee Boonchui
Symmetry 2025, 17(3), 316; https://doi.org/10.3390/sym17030316 - 20 Feb 2025
Viewed by 464
Abstract
This study investigates the mechanisms driving current generation, power output, and charge storage in carbon nanotube springs under mechanical strain, addressing the gap between experimental observations and theoretical modeling, particularly in asymmetric electrical responses. Leveraging the Dirac equation in curved spacetime, we analyze [...] Read more.
This study investigates the mechanisms driving current generation, power output, and charge storage in carbon nanotube springs under mechanical strain, addressing the gap between experimental observations and theoretical modeling, particularly in asymmetric electrical responses. Leveraging the Dirac equation in curved spacetime, we analyze how curvature-induced scalar and pseudo-gauge potentials shape two-dimensional electron gases confined to carbon nanotube springs. We incorporate applied mechanical strain by introducing time-dependent variations in the Lamé coefficient and curvature parameters, enabling the analysis of mechanical deformation’s influence on electrical properties. Our model clarifies asymmetric electrical responses during stretching and compression cycles and explains how strain-dependent power outputs arise from the interplay between mechanical deformation and curvature effects. Additionally, we demonstrate mechanisms by which strain influences charge redistribution within the helically coiled structure. We develop a new equivalent circuit model linking mechanical deformation directly to electronic behavior, bridging theoretical physics with practical electromechanical applications. The analysis reveals asymmetric time-dependent currents, enhanced power output during stretching, and strain-dependent charge redistribution. Fourier analysis uncovers dominant frequency components (primary at Ω, harmonic at 2Ω) explaining these asymmetries. Theoretical investigations explain the mechanisms behind the curvature-driven time-dependent current source, the frequency-dependent peak power, the characteristics of open-circuit voltage with strain, and the asymmetric electrical property response under applied strain as the generated current and the charge distribution within the carbon nanotube springs. These findings highlight carbon nanotube springs applied to energy harvesting, wearable electronics, and sensing technologies. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

25 pages, 943 KiB  
Article
A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter?
by André Maeder and Frédéric Courbin
Symmetry 2024, 16(11), 1420; https://doi.org/10.3390/sym16111420 - 24 Oct 2024
Viewed by 1970
Abstract
We first briefly review the adventure of scale invariance in physics, from Galileo Galilei, Weyl, Einstein, and Feynman to the revival by Dirac (1973) and Canuto et al. (1977). In the way that the geometry of space–time can be described by the coefficients [...] Read more.
We first briefly review the adventure of scale invariance in physics, from Galileo Galilei, Weyl, Einstein, and Feynman to the revival by Dirac (1973) and Canuto et al. (1977). In the way that the geometry of space–time can be described by the coefficients gμν, a gauging condition given by a scale factor λ(xμ) is needed to express the scaling. In general relativity (GR), λ=1. The “Large Number Hypothesis” was taken by Dirac and by Canuto et al. to fix λ. The condition that the macroscopic empty space is scale-invariant was further preferred (Maeder 2017a), the resulting gauge is also supported by an action principle. Cosmological equations and a modified Newton equation were then derived. In short, except in extremely low density regions, the scale-invariant effects are largely dominated by Newtonian effects. However, their cumulative effects may still play a significant role in cosmic evolution. The theory contains no “adjustment parameter”. In this work, we gather concrete observational evidence that scale-invariant effects are present and measurable in astronomical objects spanning a vast range of masses (0.5 M< M <1014M) and an equally impressive range of spatial scales (0.01 pc < r < 1 Gpc). Scale invariance accounts for the observed excess in velocity in galaxy clusters with respect to the visible mass, the relatively flat/small slope of rotation curves in local galaxies, the observed steep rotation curves of high-redshift galaxies, and the excess of velocity in wide binary stars with separations above 3000 kau found in Gaia DR3. Last but not least, we investigate the effect of scale invariance on gravitational lensing. We show that scale invariance does not affect the geodesics of light rays as they pass in the vicinity of a massive galaxy. However, scale-invariant effects do change the inferred mass-to-light ratio of lens galaxies as compared to GR. As a result, the discrepancies seen in GR between the total lensing mass of galaxies and their stellar mass from photometry may be accounted for. This holds true both for lenses at high redshift like JWST-ER1 and at low redshift like in the SLACS sample. Of note is that none of the above observational tests require dark matter or any adjustable parameter to tweak the theory at any given mass or spatial scale. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 281 KiB  
Article
Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole
by Cong Wang, Jie Zhang and Yu-Zhen Liu
Universe 2023, 9(12), 496; https://doi.org/10.3390/universe9120496 - 28 Nov 2023
Cited by 1 | Viewed by 1590
Abstract
In the spacetime of a linearly accelerating Kinnersley black hole, the Lorentz-breaking theory is used to modify the dynamical equations of Dirac particles by selecting gamma matrices and aether-like field vectors in the curved spacetime of this black hole. Using the WKB approximation [...] Read more.
In the spacetime of a linearly accelerating Kinnersley black hole, the Lorentz-breaking theory is used to modify the dynamical equations of Dirac particles by selecting gamma matrices and aether-like field vectors in the curved spacetime of this black hole. Using the WKB approximation and black hole quantum tunneling radiation theory, we investigate the characteristics of quantum tunneling radiation in this black hole.By solving the modified spinor field equations, we obtain expressions for the corrected quantum tunneling rate, Hawking temperature, and surface gravitation of the black hole. By studying the particle radial component of the general momentum in this curved spacetime, a new expression for the modified distribution of positive and negative energy levels of Dirac particles, as well as their maximum value of crossing energy level, is obtained. In order to further elucidate the physical significance of the research methodology employed in the article and a series of conclusions obtained, a detailed discussion of the corresponding results is provided in the later sections of this paper. Full article
(This article belongs to the Special Issue Black Hole Thermodynamics, 2nd Edition)
21 pages, 360 KiB  
Article
On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings
by Saulo S. de Albuquerque Filho, Valdir Barbosa Bezerra and Jefferson Morais Toledo
Axioms 2023, 12(2), 187; https://doi.org/10.3390/axioms12020187 - 10 Feb 2023
Cited by 1 | Viewed by 1715
Abstract
In this paper, we obtain the metric of the space-time generated by a charged and rotating gravitational body surrounded by a loud of strings, namely, the Kerr–Newman black hole space-time with the addition of a cloud of strings. In this background, we find [...] Read more.
In this paper, we obtain the metric of the space-time generated by a charged and rotating gravitational body surrounded by a loud of strings, namely, the Kerr–Newman black hole space-time with the addition of a cloud of strings. In this background, we find the radial solutions of the Dirac equation for massive particles and show that they are given in terms of the Generalized Heun functions. The dependence of these solutions on the parameter that codifies the presence of the cloud of strings is pointed out. Full article
(This article belongs to the Special Issue String Theory and Mathematical Physics)
19 pages, 363 KiB  
Article
Revisiting the Schrödinger–Dirac Equation
by Nicolas Fleury, Fayçal Hammad and Parvaneh Sadeghi
Symmetry 2023, 15(2), 432; https://doi.org/10.3390/sym15020432 - 6 Feb 2023
Cited by 7 | Viewed by 3162
Abstract
In flat spacetime, the Dirac equation is the “square root” of the Klein–Gordon equation in the sense that, by applying the square of the Dirac operator to the Dirac spinor, one recovers the equation duplicated for each component of the spinor. In the [...] Read more.
In flat spacetime, the Dirac equation is the “square root” of the Klein–Gordon equation in the sense that, by applying the square of the Dirac operator to the Dirac spinor, one recovers the equation duplicated for each component of the spinor. In the presence of gravity, applying the square of the curved-spacetime Dirac operator to the Dirac spinor does not yield the curved-spacetime Klein–Gordon equation, but instead yields the Schrödinger–Dirac covariant equation. First, we show that the latter equation gives rise to a generalization to spinors of the covariant Gross–Pitaevskii equation. Then, we show that, while the Schrödinger–Dirac equation is not conformally invariant, there exists a generalization of the equation that is conformally invariant but which requires a different conformal transformation of the spinor than that required by the Dirac equation. The new conformal factor acquired by the spinor is found to be a matrix-valued factor obeying a differential equation that involves the Fock–Ivanenko line element. The Schrödinger–Dirac equation coupled to the Maxwell field is then revisited and generalized to particles with higher electric and magnetic moments while respecting gauge symmetry. Finally, Lichnerowicz’s vanishing theorem in the conformal frame is also discussed. Full article
(This article belongs to the Special Issue Quantum Information and Symmetry)
9 pages, 265 KiB  
Article
Particle Creation and the Schwinger Model
by José Navarro-Salas and Silvia Pla
Symmetry 2022, 14(11), 2435; https://doi.org/10.3390/sym14112435 - 17 Nov 2022
Cited by 1 | Viewed by 2133
Abstract
We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a [...] Read more.
We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime. Full article
(This article belongs to the Special Issue Black Holes, Cosmology, Quantum Gravity, and Their Symmetries)
16 pages, 362 KiB  
Article
Spin-1/2 Particles under the Influence of a Uniform Magnetic Field in the Interior Schwarzschild Solution
by Fayçal Hammad, Alexandre Landry and Parvaneh Sadeghi
Universe 2021, 7(12), 467; https://doi.org/10.3390/universe7120467 - 30 Nov 2021
Cited by 5 | Viewed by 2596
Abstract
The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic [...] Read more.
The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed. Full article
(This article belongs to the Special Issue Universe: Feature Papers − Compact Objects)
17 pages, 351 KiB  
Article
Theory of Spinors in Curved Space-Time
by Ying-Qiu Gu
Symmetry 2021, 13(10), 1931; https://doi.org/10.3390/sym13101931 - 14 Oct 2021
Cited by 8 | Viewed by 4207
Abstract
By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of the [...] Read more.
By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of the Dirac equation, the energy-momentum tensor of spinors and so on. To split the spinor connection into the Keller connection ΥμΛ1 and the pseudo-vector potential ΩμΛ3 not only makes the calculation simpler, but also highlights their different physical meanings. The representation of the new spinor connection is dependent only on the metric, but not on the Dirac matrix. Only in the new form of connection can we clearly define the classical concepts for the spinor field and then derive its complete classical dynamics, that is, Newton’s second law of particles. To study the interaction between space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor fields; however, the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression. In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a spinor coefficient table Sabμν, which plays an important role in the interaction between spinor and gravity. From this paper we find that Clifford algebra has irreplaceable advantages in the study of geometry and physics. Full article
(This article belongs to the Special Issue Symmetry in Quantum Theory of Gravity)
Show Figures

Figure 1

48 pages, 578 KiB  
Review
Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology
by Jerónimo Cortez, Beatriz Elizaga Navascués, Guillermo A. Mena Marugán, Santiago Prado and José M. Velhinho
Universe 2020, 6(12), 241; https://doi.org/10.3390/universe6120241 - 13 Dec 2020
Cited by 5 | Viewed by 2562
Abstract
In generic curved spacetimes, the unavailability of a natural choice of vacuum state introduces a serious ambiguity in the Fock quantization of fields. In this review, we study the case of fermions described by a Dirac field in non-stationary spacetimes, and present recent [...] Read more.
In generic curved spacetimes, the unavailability of a natural choice of vacuum state introduces a serious ambiguity in the Fock quantization of fields. In this review, we study the case of fermions described by a Dirac field in non-stationary spacetimes, and present recent results obtained by us and our collaborators about well-motivated criteria capable to ensure the uniqueness in the selection of a vacuum up to unitary transformations, at least in certain situations of interest in cosmology. These criteria are based on two reasonable requirements. First, the invariance of the vacuum under the symmetries of the Dirac equations in the considered spacetime. These symmetries include the spatial isometries. Second, the unitary implementability of the Heisenberg dynamics of the annihilation and creation operators when the curved spacetime is treated as a fixed background. This last requirement not only permits the uniqueness of the Fock quantization but, remarkably, it also allows us to determine an essentially unique splitting between the phase space variables assigned to the background and the fermionic annihilation and creation variables. We first consider Dirac fields in 2 + 1 dimensions and then discuss the more relevant case of 3 + 1 dimensions, particularizing the analysis to cosmological spacetimes with spatial sections of spherical or toroidal topology. We use this analysis to investigate the combined, hybrid quantization of the Dirac field and a flat homogeneous and isotropic background cosmology when the latter is treated as a quantum entity, and the former as a perturbation. Specifically, we focus our study on a background quantization along the lines of loop quantum cosmology. Among the Fock quantizations for the fermionic perturbations admissible according to our criteria, we discuss the possibility of further restricting the choice of a vacuum by the requisite of a finite fermionic backreaction and, moreover, by the diagonalization of the fermionic contribution to the total Hamiltonian in the asymptotic limit of large wave numbers of the Dirac modes. Finally, we argue in support of the uniqueness of the vacuum state selected by the extension of this diagonalization condition beyond the commented asymptotic region, in particular proving that it picks out the standard Poincaré and Bunch–Davies vacua for fixed flat and de Sitter background spacetimes, respectively. Full article
15 pages, 289 KiB  
Article
Antimatter Gravity: Second Quantization and Lagrangian Formalism
by Ulrich D. Jentschura
Physics 2020, 2(3), 397-411; https://doi.org/10.3390/physics2030022 - 3 Sep 2020
Cited by 3 | Viewed by 3526
Abstract
The application of the CPT (charge-conjugation, parity, and time reversal) theorem to an apple falling on Earth leads to the description of an anti-apple falling on anti–Earth (not on Earth). On the microscopic level, the Dirac equation in curved space-time simultaneously describes spin- [...] Read more.
The application of the CPT (charge-conjugation, parity, and time reversal) theorem to an apple falling on Earth leads to the description of an anti-apple falling on anti–Earth (not on Earth). On the microscopic level, the Dirac equation in curved space-time simultaneously describes spin-1/2 particles and their antiparticles coupled to the same curved space-time metric (e.g., the metric describing the gravitational field of the Earth). On the macroscopic level, the electromagnetically and gravitationally coupled Dirac equation therefore describes apples and anti-apples, falling on Earth, simultaneously. A particle-to-antiparticle transformation of the gravitationally coupled Dirac equation therefore yields information on the behavior of “anti-apples on Earth”. However, the problem is exacerbated by the fact that the operation of charge conjugation is much more complicated in curved, as opposed to flat, space-time. Our treatment is based on second-quantized field operators and uses the Lagrangian formalism. As an additional helpful result, prerequisite to our calculations, we establish the general form of the Dirac adjoint in curved space-time. On the basis of a theorem, we refute the existence of tiny, but potentially important, particle-antiparticle symmetry breaking terms in which possible existence has been investigated in the literature. Consequences for antimatter gravity experiments are discussed. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology)
54 pages, 448 KiB  
Article
The Spinor-Tensor Gravity of the Classical Dirac Field
by Piero Chiarelli
Symmetry 2020, 12(7), 1124; https://doi.org/10.3390/sym12071124 - 6 Jul 2020
Cited by 4 | Viewed by 4134
Abstract
In this work, with the help of the quantum hydrodynamic formalism, the gravitational equation associated with the classical Dirac field is derived. The hydrodynamic representation of the Dirac equation described by the evolution of four mass densities, subject to the theory-defined quantum potential, [...] Read more.
In this work, with the help of the quantum hydrodynamic formalism, the gravitational equation associated with the classical Dirac field is derived. The hydrodynamic representation of the Dirac equation described by the evolution of four mass densities, subject to the theory-defined quantum potential, has been generalized to the curved space-time in the covariant form. Thence, the metric of space-time has been defined by imposing the minimum action principle. The derived gravity shows the spontaneous emergence of the “cosmological” gravity tensor (CGT), a generalization of the classical cosmological constant (CC), as a part of the energy-impulse tensor density (EITD). Even if the classical cosmological constant is set to zero, the CGT is non-zero, allowing a stable quantum vacuum (out of the collapsed branched polymer phase). The theory shows that in the classical macroscopic limit, the general relativity equation is recovered. In the perturbative approach, the CGT leads to a second-order correction to Newtonian gravity that takes contribution from the space where the mass is localized (and the space-time is curvilinear), while it tends to zero as the space-time approaches the flat vacuum, leading, as a means, to an overall cosmological constant that may possibly be compatible with the astronomical observations. The Dirac field gravity shows analogies with the modified Brans–Dicke gravity, where each spinor term brings an effective gravity constant G divided by its field squared. The work shows that in order to obtain the classical minimum action principle and the general relativity limit of the macroscopic classical scale, quantum decoherence is necessary. Full article
(This article belongs to the Special Issue Symmetry in Quantum Systems)
14 pages, 304 KiB  
Article
The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric
by Davide Batic, Marek Nowakowski and Kirk Morgan
Universe 2016, 2(4), 31; https://doi.org/10.3390/universe2040031 - 2 Dec 2016
Cited by 18 | Viewed by 5046
Abstract
We use the Dirac equation in a fixed black hole background and different independent techniques to demonstrate the absence of fermionic bound states around a Schwarzschild black hole. In particular, we show that no embedded eigenvalues exist which has been claimed for the [...] Read more.
We use the Dirac equation in a fixed black hole background and different independent techniques to demonstrate the absence of fermionic bound states around a Schwarzschild black hole. In particular, we show that no embedded eigenvalues exist which has been claimed for the case when the energy is less than the particle’s mass. We explicitly prove that the claims regarding the embedded eigenvalues can be traced back to an oversimplified approximation in the calculation. We conclude that no bound states exist regardless of the value of the mass. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Back to TopTop