Peccei–Quinn Transformations and Black Holes: Orbit Transmutations and Entanglement Generation
Abstract
:1. Introduction
2. Peccei–Quinn Symplectic Group and Operator
3. Some “Large” and “Small” Configurations
- Kaluza-Klein (KK) configurations:
- Electric (E) configurations:
- Magnetic (M) configurations:
4. Peccei–Quinn Orbit Transmutations
- 1.1]
- “Large” KK configuration:
- 2.1]
- ”Large” electric configuration:
- 3.1]
- “Large” magnetic configuration:
- 2.2]
- “Small” rank-three electric configuration ():
- 3.2]
- “Small” rank-three magnetic configuration ():
- 2.3]
- “Small” rank-two electric configuration (, but at least for some i):
- 3.3]
- “Small” rank-two magnetic configuration (, but at least for some i):
- 2.4]
- “Small” rank-one electric configuration (, but at least for some i):
- 3.4]
- “Small” rank-one magnetic configuration (, but at least for some i):
- 1.3]
- “Small” rank-one magnetic KK configuration:
- 1.2]
- “Small” rank-one electric KK configuration:
5. Superpositions
6. Entanglement PQ Operators and Complexification
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
- 2.symplectic transformations also provide an example of pseudo-dualities in supergravity [54]
- 3.this coset was recently exploited in the analysis of the so-called symplectic deformations of gauged , supergravity [55], later extended to other supergravity theories
- 4.We will always consider the ”large, real charge” supergravity limit within BHQC. In the case of (dyonic) quantized charges, the analysis of FTSs is more complicated, and a full classification of U-duality orbits is not even currently available (for some advances along this venue, and lists of references, cf., e.g., [25,57]).
- 6.Throughout the present investigation, we will not make use of the Einstein summation convention. Such a choice, which may result in being cumbersome for the customary supergravity treatment, is made in order to comply with the most used notation in QIT.
- 7.Note that the “±” branches of and are independent, but the “±” branch of ρ depends on their choice, consistently with Equation (122).
References
- Cremmer, E.; Julia, B. The = 8 Supergravity Theory. 1. The Lagrangian. Phys. Lett. B 1978, 80, 48–51. [Google Scholar] [CrossRef]
- Cremmer, E.; Julia, B. The SO(8) Supergravity. Nucl. Phys. B 1979, 159, 141–212. [Google Scholar] [CrossRef]
- Hull, C.; Townsend, P.K. Unity of Superstring Dualities. Nucl. Phys. B 1995, 438, 109–137. [Google Scholar] [CrossRef]
- Ferrara, S.; Günaydin, M. Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 1998, 13, 2075–2088. [Google Scholar] [CrossRef]
- Borsten, L.; Duff, M.J.; Ferrara, S.; Marrani, A.; Rubens, W. Small Orbits. Phys. Rev. D 2012, 85, 086002. [Google Scholar] [CrossRef]
- Marrani, A. Charge Orbits and Moduli Spaces of Black Hole Attractors. Lect. Notes Math. 2011, 2027, 155–174. [Google Scholar]
- Ferrara, S.; Kallosh, R.; Strominger, A. = 2 extremal black holes. Phys. Rev. D. 1995, 52, R5412–R5416. [Google Scholar] [CrossRef]
- Strominger, A. Macroscopic entropy of = 2 extremal black holes. Phys. Lett. B 1996, 383, 39–43. [Google Scholar] [CrossRef]
- Ferrara, S.; Kallosh, R. Supersymmetry and attractors. Phys. Rev. D 1996, 54, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, S.; Kallosh, R. Universality of supersymmetric attractors. Phys. Rev. D 1996, 54, 1525–1534. [Google Scholar] [CrossRef]
- Ferrara, S.; Gibbons, G.W.; Kallosh, R. Black Holes and Critical Points in Moduli Space. Nucl. Phys. B 1997, 500, 75–93. [Google Scholar] [CrossRef]
- Hawking, S.W. Gravitational Radiation from Colliding Black Holes. Phys. Rev. Lett. D 1971, 26, 1344–1346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Kallosh, R.; Kol, B. E(7) symmetric area of the black hole horizon. Phys. Rev. D 1996, 53, R5344–R5348. [Google Scholar] [CrossRef]
- Ferrara, S.; Gimon, E.G.; Kallosh, R. Magic supergravities, = 8 and black hole composites. Phys. Rev. D 2006, 74, 125018. [Google Scholar] [CrossRef]
- Bellucci, S.; Ferrara, S.; Kallosh, R.; Marrani, A. Extremal Black Hole and Flux Vacua Attractors. Lect. Notes Phys. 2008, 755, 115–191. [Google Scholar]
- Ferrara, S.; Hayakawa, K.; Marrani, A. Lectures on Attractors and Black Holes. Fortsch. Phys. 2008, 56, 993–1046. [Google Scholar] [CrossRef]
- Andrianopoli, L.; D’Auria, R.; Ferrara, S.; Trigiante, M. Black-hole attractors in = 1 supergravity. J. High Energy Phys. 2007, 2007, 019. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.; Ortín, T.; Peet, A.; Proeyen, A.V. Supersymmetry as a cosmic censor. Phys. Rev. D 1992, 46, 5278–5302. [Google Scholar] [CrossRef] [Green Version]
- Holzhey, C.F.E.; Wilczek, F. Black holes as elementary particles. Nucl. Phys. B 1992, 380, 447–477. [Google Scholar] [CrossRef]
- Iso, S.; Umetsu, H.; Wilczek, F. Anomalies, Hawking radiations and regularity in rotating black holes. Phys. Rev. Lett. 2006, 96, 151302. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, S.; Savoy, C.; Zumino, B. General Massive Multiplets in Extended Supersymmetry. Phys. Lett. B 1981, 100, 393–398. [Google Scholar] [CrossRef]
- Nahm, W. Supersymmetries and their Representations. Nucl. Phys. B 1978, 135, 149–166. [Google Scholar] [CrossRef]
- Ferrara, S.; Maldacena, J.M. Branes, central charges and U duality invariant BPS conditions. Class. Quantum Gravity 1998, 15, 749–758. [Google Scholar] [CrossRef]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Ferrara, S.; Marrani, A.; Rubens, W. Observations on integral and continuous U-duality orbits in = 8 supergravity. Class. Quantum Gravity 2008, 27, 185003. [Google Scholar] [CrossRef]
- Duff, M.J. String triality, black hole entropy and Cayley’s hyperdeterminant. Phys. Rev. D 2007, 76, 025017. [Google Scholar] [CrossRef]
- Duff, M.J.; Ferrara, S. Black hole entropy and quantum information. Lect. Notes Phys. 2008, 755, 93–114. [Google Scholar]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W. Freudenthal triple classification of three-qubit entanglement. Phys. Rev. A 2009, 80, 032326. [Google Scholar] [CrossRef]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W. Wrapped branes as qubits. Phys. Rev. Lett. 2008, 100, 251602. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.J.; Ferrara, S. Black holes, qubits and the Fano Plane. Subnucl. Ser. 2008, 44, 101–135. [Google Scholar]
- Borsten, L.; Duff, M.J.; Marrani, A.; Rubens, W. On the Black-Hole/Qubit Correspondence. Eur. Phys. J. Plus 2011, 126, 37. [Google Scholar] [CrossRef]
- Borsten, L.; Duff, M.J.; Lévay, P. The black-hole/qubit correspondence: An up-to-date review. Class. Quantum Gravity 2012, 29, 224008. [Google Scholar] [CrossRef]
- Lévay, P. STU Black Holes as Four Qubit Systems. Phys. Rev. B 2010, 82, 026003. [Google Scholar]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W. Black Holes, Qubits and Octonions. Phys. Rep. 2009, 471, 113–219. [Google Scholar] [CrossRef]
- Lévay, P. Two-Center Black Holes, Qubits and Elliptic Curves. Phys. Rev. D 2011, 84, 025023. [Google Scholar] [CrossRef]
- Lévay, P. A Three-qubit interpretation of BPS and non-BPS STU black holes. Phys. Rev. D 2007, 76, 106011. [Google Scholar] [CrossRef]
- Lévay, P.; Szalay, S. STU attractors from vanishing concurrence. Phys. Rev. D 2011, 83, 045005. [Google Scholar] [CrossRef]
- Duff, M.J.; Liu, J.T.; Rahmfeld, J. Four-dimensional String-String-String Triality. Nucl. Phys. B 1996, 459, 125–159. [Google Scholar] [CrossRef]
- Behrndt, K.; Kallosh, R.; Rahmfeld, J.; Shmakova, M.; Wong, W.K. STU Black Holes and String Triality. Phys. Rev. D 1996, 54, 6293–6301. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Strings, black holes, and quantum information. Phys. Rev. D 2006, 73, 104033. [Google Scholar] [CrossRef]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Marrani, A.; Rubens, W. Four-qubit entanglement from string theory. Phys. Rev. Lett. 2010, 105, 100507. [Google Scholar] [CrossRef] [PubMed]
- Lévay, P. Qubits from extra dimensions. Phys. Rev. D 2011, 84, 125020. [Google Scholar] [CrossRef]
- Duff, M.J.; Ferrara, S. E7 and the tripartite entanglement of seven qubits. Phys. Rev. D 2007, 76, 025018. [Google Scholar] [CrossRef]
- Duff, M.J.; Ferrara, S. E6 and the bipartite entanglement of three qutrits. Phys. Rev. D 2007, 76, 124023. [Google Scholar] [CrossRef]
- Prudencio, T.; Cirilo-Lombardo, D.J.; Silva, E.O.; Belich, H. Black hole qubit correspondence from quantum circuits. Mod. Phys. Lett. A 2015, 30, 1550104. [Google Scholar] [CrossRef]
- Freudenthal, H. Beziehungen der E7 und E8 zur oktavenebene I-II. Nederl. Akad. Wetensch. Proc. Ser. 1954, 57, 21–230. [Google Scholar]
- Brown, R.B. Groups of type E7. J. Reine Angew. Math. 1969, 236, 79–102. [Google Scholar]
- Faulkner, J.R. A Construction of Lie Algebras from a Class of Ternary Algebras. Trans. Am. Math. Soc. 1971, 155, 397–408. [Google Scholar] [CrossRef]
- Ferrar, C.J. Strictly Regular Elements in Freudenthal Triple Systems. Trans. Amer. Math. Soc. 1972, 174, 313–331. [Google Scholar] [CrossRef]
- Krutelevich, S. On a canonical form of a 3 × 3 Herimitian matrix over the ring of integral split octonions. J. Algebra 2002, 253, 276–295. [Google Scholar] [CrossRef]
- Krutelevich, S. Jordan algebras, exceptional groups, and Bhargava composition. J. Algebra 2007, 314, 924–977. [Google Scholar] [CrossRef]
- Bennett, C.H.; Popescu, S.; Rohrlich, D.; Smolin, J.A.; Thapliyal, A.V. Exact and Asymptotic Measures of Multipartite Pure State Entanglement. Phys. Rev. A 2000, 63, 012307. [Google Scholar] [CrossRef]
- Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 2000, 62, 062314. [Google Scholar] [CrossRef]
- Hull, C.M.; van Proeyen, A. Pseudoduality. Phys. Rev. B 1995, 351, 188–193. [Google Scholar]
- Dall’Agata, G.; Inverso, G.; Marrani, A. Symplectic Deformations of Gauged Maximal Supergravity. J. High Energy Phys. 2014, 1407, 133. [Google Scholar] [CrossRef]
- Bellucci, S.; Marrani, A.; Roychowdhury, R. Topics in Cubic Special Geometry. J. Math. Phys. 2011, 52, 082302. [Google Scholar] [CrossRef]
- Borsten, L.; Dahanayake, D.; Duff, M.J.; Rubens, W. Black holes admitting a Freudenthal dual. Phys. Rev. D 2009, 80, 026003. [Google Scholar] [CrossRef]
- Ceresole, A.; D’Auria, R.; Ferrara, S.; van Proeyen, A. Duality Transformations in Supersymmetric Yang-Mills Theories Coupled to Supergravity. Nucl. Phys. B 1995, 444, 92–124. [Google Scholar] [CrossRef]
- Dynkin, E. The maximal subgroups of the classical groups. Am. Math. Soc. Transl. Ser. 1957, 2, 245–270. [Google Scholar]
- Ceresole, A.; D’Auria, R.; Ferrara, S. The Symplectic structure of = 2 supergravity and its central extension. Nucl. Phys. Proc. Suppl. 1996, 46, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Kimura, T. A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 1977, 65, 1–155. [Google Scholar] [CrossRef]
- Kac, V.G. Some Remarks on Nilpotent Orbits. J. Algebra 1980, 64, 190–213. [Google Scholar] [CrossRef]
- Cassani, D.; Ferrara, S.; Marrani, A.; Morales, J.F.; Samtleben, H. A Special road to AdS vacua. J. High Energy Phys. 2010, 2010, 27. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudêncio, T.; Marrani, A.; Cirilo-Lombardo, D.J. Peccei–Quinn Transformations and Black Holes: Orbit Transmutations and Entanglement Generation. Universe 2017, 3, 12. https://doi.org/10.3390/universe3010012
Prudêncio T, Marrani A, Cirilo-Lombardo DJ. Peccei–Quinn Transformations and Black Holes: Orbit Transmutations and Entanglement Generation. Universe. 2017; 3(1):12. https://doi.org/10.3390/universe3010012
Chicago/Turabian StylePrudêncio, Thiago, Alessio Marrani, and Diego J. Cirilo-Lombardo. 2017. "Peccei–Quinn Transformations and Black Holes: Orbit Transmutations and Entanglement Generation" Universe 3, no. 1: 12. https://doi.org/10.3390/universe3010012