# Baryon Number Transfer Could Delay Quark–Hadron Transition in Cosmology

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Baryon Number Transfer from Plasma to Baryons, and Likelihood of Diquark States

#### Bag-Like Models

## 3. An Analytical Description of the Cosmological QH Transition, and Coupled DM-DE Equilibrium Recovery in SCDEW Models

#### 3.1. SCDEW Cosmologies

#### 3.2. Attractor Behavior at the Cosmological QH Transition

#### 3.3. Density Anomalies Caused by QH Transition

## 4. Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Susskind, L. Lattice models of quark confinement at high temperature. Phys. Rev. D
**1979**, 20, 2610–2618. [Google Scholar] [CrossRef] - Satz, H. On critical phenomena in strong interaction physics. In Proceedings of the 17th Winter School of Theoretical Physics, Karpacz, Poland, 22 February–6 March 1980.
- Bonometto, S.A.; Pantano, O. Physics of the cosmological quark-hadron transition. Phys. Rep.
**1993**, 228, 175–252. [Google Scholar] [CrossRef] - Witten, E. Cosmic separation of phases. Phys. Rev. D
**1984**, 30, 272–285. [Google Scholar] [CrossRef] - Bonometto, S.A.; Marchetti, P.; Matarrese, S. Quark nuggets or baryon nuggets? Phys. Lett. B
**1985**, 157, 216–220. [Google Scholar] [CrossRef] - Appegate, J.; Hogan, C. Relics of cosmic quark condensation. Phys. Rev. D
**1985**, 31, 3037–3045. [Google Scholar] [CrossRef] - Keihänen, E. Inhomogeneous big bang nucleosynthesis and mutual ion diffusion. Phys. Rev. D
**2002**, 66, 043512. [Google Scholar] [CrossRef] - Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D
**1984**, 30, 2379–2390. [Google Scholar] [CrossRef] - Alcock, C.; Farhi, E.; Olinto, A.V. Strange stars. Astrophys. J.
**1986**, 310, 261–272. [Google Scholar] [CrossRef] - Armesto, N.; Scomparin, E. Heavy-ion collisions at the Large Hadron Collider: A review of the results from Run 1. Eur. Phys. J. Plus
**2016**, 131, 52. [Google Scholar] [CrossRef] - Alford, M.G. Quark matter in neutron stars. Nucl. Phys. A
**2009**, 830, 385c–392c. [Google Scholar] [CrossRef] - Bonometto, S.A.; Sassi, G.; La Vacca, G. Dark energy from dark radiation in strongly coupled cosmologies with no fine tuning. J. Cosmol. Astropart. Phys.
**2012**, 2012, 015. [Google Scholar] [CrossRef] - Macció, A.V.; Mainini, R.; Penzo, C.; Bonometto, S.A. Strongly Coupled Dark Energy Cosmologies: Preserving LCDM success and easing low scale problems II—Cosmological simulations. Mon. Not. R. Astron. Soc.
**2015**, 453, 1371–1378. [Google Scholar] [CrossRef] - Ida, M.; Kobayashi, R. Baryon Resonances in a Quark Model. Prog. Theor. Phys.
**1966**, 36, 846–847. [Google Scholar] [CrossRef] - Jaffe, R.L.; Wilczek, F. Diquarks and exotic spectroscopy. Phys. Rev. Lett.
**2003**, 91, 232003. [Google Scholar] [CrossRef] [PubMed] - Nakano, T.; Ahn, D.S.; Ahn, J.K.; Akimune, H.; Asano, Y.; Chang, W.C.; Daté, S.; Ejiri, H.; Fujimura, H.; Fujiwara, M.; et al. Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron. Phys. Rev. Lett.
**2003**, 91, 012002. [Google Scholar] [CrossRef] [PubMed] - Kabana, S. Review of the experimental evidence on pentaquarks and critical discussion. In Proceedings of the International Conference on Quark Confinement and the Hadron Spectrum VI, Villasimius, Italy, 21–25 September 2004.
- Moritsu, M. Search for the Pentaquark Θ+ via the π
^{-}p→κ^{-}X Reaction at J–PARC; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] - Alexandrou, C.; de Forcrand, Ph.; Lucini, B. Evidence for Diquarks in Lattice QCD. Phys. Rev. Lett.
**2002**, 97, 222002. [Google Scholar] [CrossRef] [PubMed] - Jaffe, R.L.; Wilczek, F. Quarks, diquarks and pentaquarks. Phys. World
**2004**, 17, 25–30. [Google Scholar] [CrossRef] - Wilczek, F. Diqurks as inspiration and as objects. In From Fields to Strings: Circumnavigating Theoretical Physics; World Scientific: Singapore, 2004; pp. 77–93. [Google Scholar]
- Selem, A.; Wilkzek, F. Hadron systematics and emergent diquarks. In Proceedings of the Ringberg Workshop on New Trends in HERA Physics, Tegernsee, Germany, 2–7 October 2005.
- Esposito, A.; Guerrieri, A.L.; Piccinini, F.; Pilloni, A.; Polosa, A. Four-quark hadrons: An updated review. Int. J. Mod. Phys. A
**2015**, 30, 1530002. [Google Scholar] [CrossRef] - Segovia, J.; Cloët, I.C.; Roberts, C.D.; Schmidt, S.M. Nucleon and Δelastic and transition form factors. Few-Body Syst.
**2014**, 55, 1185–1222. [Google Scholar] [CrossRef] - Olive, K.A. The thermodynamics of the quark-hadron phase transition in the early universe. Nucl. Phys. B
**1982**, 190, 483–503. [Google Scholar] [CrossRef] - Karsch, F.; Satz, H. Thermodynamics of extended hadrons. Phys. Rev. D
**1980**, 21, 1168–1175. [Google Scholar] [CrossRef] - Bonometto, S.A. Thermodynamics of extended hadrons with baryon number. Nuovo Cimento A
**1986**, 74, 325–340. [Google Scholar] [CrossRef] - Petreszky, P. Review of recent highlights in lattice calculations at finite temperature and finite density. In Proceedings of the X Conference on Quark Confinement and Hadron Spectrum, Munich, Germany, 8–12 October 2012.
- Hietanen, A.; Kajantie, K.; Laine, M.; Rummukainen, K.; Schröder, Y. Three–dimensional physics and pressure of hot QCD. Phys. Rev. D
**2009**, 79, 045018. [Google Scholar] [CrossRef] - Laine, M.; Schröder, Y. Quark mass threshold in QCD thermodynamics. Phys. Rev. D
**2006**, 73, 085009. [Google Scholar] [CrossRef] - Borsányi, S.; Endrödi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. Precision SU(3) lattice thermodynamics for large temperature range. J. High Energy Phys.
**2012**, 2012, 1–22. [Google Scholar] [CrossRef] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.
**2016**, 594, A13. [Google Scholar] - Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. J.
**2008**, 686, 749–778. [Google Scholar] [CrossRef] - Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.-L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report; ESA: Paris, France, 2011. [Google Scholar]
- Bonometto, S.A.; Mainini, R. Fluctuations in strongly coupled cosmologies. J. Cosmol. Astropart. Phys.
**2014**, 2014, 038. [Google Scholar] [CrossRef]

**Figure 1.**A scheme of s.i. matter states and transition lines; the

**red**vertical line at the extreme left shows the track of cosmological evolution, quite far from any other relevant area. We expect a phase transition to occur along the

**black**curve. Any suggested phase transitions across other curves in

**cyan**are hypothetical; the very existence of a QG liquid and of its superconducting phase is hypothetical [11]. ${\mu}_{q}$ is the chemical potential associated to $B/3$, the baryon number in quarks.

**Figure 2.**Expression (6) vs. lattice outputs (see text) given by

**green**triangles. The analytic curve does not meet the five lowest–T points but is a fair approximation at greater temperatures. It is terminated at the temperature $\tilde{T}$, where p would become negative.

**Figure 3.**Values of the coupling β corresponding to given values of Dark Radiation, expressed in terms of extra neutrino species. This plot is valied during BBN.

**Figure 4.**Violation of the condition $aT=\mathrm{const}.$ at the approaching of QH transition. ${T}_{i}$ (${a}_{i}$) is any large temperature (small scale factor) where asymptotic freedom still holds.

**Figure 5.**The product $aT$ is plotted vs. a all through the transition. The angular points are an effect of the approximations used to model the transition and, in particular, of the assumption that quark carried B suddenly ceases to exist all through each horizon.

**Figure 7.**QH transition causes oscillations of the early density parameters ${\mathsf{\Omega}}_{c}=2{\mathsf{\Omega}}_{\mathsf{\Phi}}=1/2{\beta}^{2}$. The system of Equation (11), when ${\rho}_{r}$ is given by expression (7), yields the results shown here for $\beta =2.5$ and 10. In the upper frames, the logarithms of ${\rho}_{r,c,\mathsf{\Phi}}{a}^{4}$ are plotted. Their deviation from the constant is also outlined in the lower frames. The normalized ratio $({\rho}_{c}+{\rho}_{\mathsf{\Phi}})/{\rho}_{r}$ exhibits a mild β dependence, in the initial oscillations, with maximum deviation by ∼$+15$%$,+18$%, when $T\simeq 20$ MeV, (if ${T}_{c}\simeq 150$ MeV). For the behaviors close to BBN, see the next figure.

**Figure 8.**Magnification of the lower plots in previous figures for the region of BBN, with T (instead of a) as ascissa. The second minimum, as also shown in the previous Figure, occurs at $T\sim 900$ keV, quite close to neutrino decoupling. The scale dependence of the radiative component between neutrino decoupling and the region of early ${}^{2}H$ synthesis undergoes a further deviation from radiative expansion, up to $\mathcal{O}(0.5\%)$, due to electron–positron annihilation. Such deviation depends on β being stronger when the coupled DM-Φ component is denser.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bonometto, S.A.; Mainini, R.
Baryon Number Transfer Could Delay Quark–Hadron Transition in Cosmology. *Universe* **2016**, *2*, 32.
https://doi.org/10.3390/universe2040032

**AMA Style**

Bonometto SA, Mainini R.
Baryon Number Transfer Could Delay Quark–Hadron Transition in Cosmology. *Universe*. 2016; 2(4):32.
https://doi.org/10.3390/universe2040032

**Chicago/Turabian Style**

Bonometto, Silvio A., and Roberto Mainini.
2016. "Baryon Number Transfer Could Delay Quark–Hadron Transition in Cosmology" *Universe* 2, no. 4: 32.
https://doi.org/10.3390/universe2040032