The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric
Abstract
:1. Introduction
2. The Dirac Equation in the Schwarzschild BH Metric
3. Non Existence of Fermionic Bound States in the Schwarzschild BH Metric
4. A Deficiency Index Approach
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zecca, A. Spin 1/2 bound states in Schwarzschild geometry. Adv. Studies Theor. Phys. 2007, 1, 271–279. [Google Scholar]
- Coatescu, I.I. Approximative analytic solutions of the Dirac equation in Schwarzschild spacetime. Mod. Phys. Lett. A 2007, 22, 2493–2498. [Google Scholar] [CrossRef]
- Lasenby, A.; Doran, C.; Pritchard, J.; Caceres, A.; Dolan, S. Bound states and decay times of fermions in a Schwarzschild black hole background. Phys. Rev. D 2005, 72, 105014. [Google Scholar] [CrossRef]
- Finster, F.; Smoller, J.; Yau, S.T. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background. J. Math. Phys. 2000, 41, 2173–2194. [Google Scholar] [CrossRef]
- Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T. Non-Existence of Time-Periodic Solutions of the Dirac Equation in an Axisymmetric Black Hole Geometry. Commun. Pure Appl. Math. 2000, 53, 902–903. [Google Scholar] [CrossRef]
- Schmid, H. Bound State Solutions of the Dirac Equation in the extreme Kerr Geometry. Math. Nachr. 2004, 274–275, 117–129. [Google Scholar] [CrossRef]
- Batic, D.; Nowakowski, M. On the bound states of the Dirac equation in the extreme Kerr metric. Class. Quantum Gravity 2008, 25, 225022. [Google Scholar] [CrossRef]
- Lesch, M.; Malamud, M. On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ. 2005, 189, 556–615. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L. Absence of Normalizable Time-periodic Solutions for the Dirac Equation in Kerr–Newman-dS black hole background. J. Phys. A 2009, 42, 135207. [Google Scholar] [CrossRef]
- Finster, F.; Kamran, N.; Smoller, J.; Yau, S.T. The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 2003, 7, 25–52. [Google Scholar] [CrossRef]
- Batic, D.; Schmid, H. The Dirac propagator in the Kerr–Newman metric. Prog. Theor. Phys 2006, 116, 517–544. [Google Scholar] [CrossRef]
- Schäfke, R.; Schmidt, D. The connection problem for general linear ordinary differential equations at two regular singular points with applications to the theory of special functions. J. Math. Anal. 1980, 11, 848–862. [Google Scholar] [CrossRef]
- Schäfke, R. A connection problem for a regular and an irregular singular point of complex ordinary differential equations. J. Math. Anal. 1984, 15, 253–271. [Google Scholar] [CrossRef]
- Batic, D.; Schmid, H.; Winklmeier, M. The generalized Heun equation in QFT in curved space-times. J. Phys. A 2006, 39, 12559–12564. [Google Scholar] [CrossRef]
- D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1999. [Google Scholar]
- Page, D. Dirac equation around a charged, rotating black hole. Phys. Rev. D 1976, 14, 1509. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Zecca, A. Dirac equation in Schwarzschild geometry. Nuovo Cimento 1998, 30, 1309–1315. [Google Scholar]
- Carter, B. Hamilton-Jakobi and Schrödinger separable solutions of Einstein equations. Commun. Math. Phys. 1968, 10, 280–310. [Google Scholar]
- Carter, B. Black Hole Equilibrium States. In Black Holes/Les Astres Occlus; de Witt, C., de Witt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Carter, B. Gravitation in Astrophysics; NATO ASI Series B; Plenum Press: New York, NY, USA, 1987; Volume 156. [Google Scholar]
- Davis, T.M. A Simple Application of the Newman-Penrose Spin Coefficient Formalism. I. Int. J. Theor. Phys. 1976, 15, 315–317. [Google Scholar] [CrossRef]
- Batic, D.; Schmid, H.; Winklmeier, M. On the eigenvalues of the Chandrasekhar-Page angular equation. J. Math. Phys. 2005, 46. [Google Scholar] [CrossRef]
- Neumark, M.A. Lineare Differentialoperatoren; Akademie Verlag: Bremen, Germany, 1960. [Google Scholar]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Dubinova, I.D.; Sajkov, S.K. W-Funkciya Lamberta i ee Primenenie v Mathematicheskix Zadachax Fiziki; RFYaTs-VNIIEF: Sarov, Russia, 2006. [Google Scholar]
- Flügge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kelkar, N.G.; Garcia Daza, F.; Nowakowski, M. Determining the size of the proton. Nucl. Phys. 2012, 864, 382–398. [Google Scholar] [CrossRef]
- Bedoya Fiero, D.; Kelkar, N.G.; Nowakowski, M. Lorentz contracted proton. J. High Energy Phys. 2015, 2015, 215. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batic, D.; Nowakowski, M.; Morgan, K. The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric. Universe 2016, 2, 31. https://doi.org/10.3390/universe2040031
Batic D, Nowakowski M, Morgan K. The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric. Universe. 2016; 2(4):31. https://doi.org/10.3390/universe2040031
Chicago/Turabian StyleBatic, Davide, Marek Nowakowski, and Kirk Morgan. 2016. "The Problem of Embedded Eigenvalues for the Dirac Equation in the Schwarzschild Black Hole Metric" Universe 2, no. 4: 31. https://doi.org/10.3390/universe2040031