Comprehensive Analysis of Different Subtypes of Oxylipins to Determine a LC–MS/MS Approach in Clinical Research
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Instruments, and Methods
2.2. Biological Samples
2.3. Preparation of Biological Samples
2.3.1. PPT Method
2.3.2. LLE Method
2.3.3. SPE Method
2.3.4. Optimization of aSPE Extraction Efficiency
2.4. UPLC–MS/MS Analysis
2.5. Method Validation Parameters
2.5.1. Reproducibility and Recovery
2.5.2. Matrix Effect
Unspiked)/Peak Area standard] × 100%
2.5.3. Linearity, Accuracy, Precision, and Sensitivity
2.6. Application to CHD Clinic Serum Sample Oxylipins Metabolomics Analysis
2.7. Statistics Analysis
3. Results
3.1. Number and Overview of Extracted Oxylipins
3.2. Advantages of Different Extraction Methods for Extracted Oxylipins
3.2.1. Extraction Efficiency
3.2.2. Extraction Recovery
3.2.3. Matrix Effects
3.3. Optimization of the Preferred Extraction Protocol
3.3.1. Comparison Between Manual and aSPE
3.3.2. Optimization of SPE Elution Solvents and Reconstitution Solvents
3.3.3. Accuracy, Precision, Linearity, and Sensitivity
3.4. Serum Oxylipins Metabolomics Analyses Reveal Biomarkers of CHD
3.4.1. Oxylipins Metabolic Profiling of Serum from CHD and HC
3.4.2. Differential Oxylipin Metabolites Between CHD and HC
3.4.3. Potential Diagnostic Biomarker Selection and Integrated Biomarker Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AA | Arachidonic acid |
| ACN | Acetonitrile |
| ALA | A-linoleic acid |
| AMI | Acute myocardial infarction |
| aSPE | Automated SPE |
| CHD | Coronary heart disease |
| COX | Cyclooxygenase |
| CV | Coefficient of variation |
| CYP450 | Cytochrome P450 |
| DHA | Docosahexaenoic acid |
| DiHETrE | Dihydroxyicosatrienoic acid |
| DiHOMEs | Dihydroxyoctadecanoic acids |
| EA | Ethyl acetate |
| EPA | Eicosapentaenoic acid |
| EpOMEs | Epicyclooctadecanoic acids |
| ESI | Electrospray ionization |
| FA | Formic acid |
| HC | Health control |
| HETE | Hydroxyeicosatetraenoic acid |
| HLB | Hydrophilic–lipophilic balance |
| IPA | Isopropanol |
| IS | Internal standard |
| LA | Linoleic acid |
| LC–MS | Liquid chromatography–mass spectrometry |
| LLE | Liquid–liquid extraction |
| LOX | Lipoxygenase |
| LVEF | Left ventricular ejection function |
| ME | Matrix effect |
| MS/MS | Random mass spectrometry |
| mSPE | Manual SPE |
| MTBE | Methyl tert-butyl ether |
| PCA | Principal component analysis |
| PLS-DA | Partial least squares discriminant analysis |
| PPT | Protein precipitation |
| PUFA | Polyunsaturated fatty acid |
| sEH | Soluble epoxide hydrolase |
| SPE | Solid-phase extraction |
| SQC | Standard quality control |
| UPLC | Ultra-performance liquid chromatography |
References
- Shearer, G.C.; Walker, R.E. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot. Essent. Fat. Acids 2018, 137, 26–38. [Google Scholar] [CrossRef]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; Souza, F.d.C.; Dalli, J.; Durand, T.; Galano, J.-M.; Lein, P.J.; et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Sun, W.; Merriman, T.R.; Dalbeth, N.; Wang, Z.; Wang, X.; Han, L.; Cui, L.; Li, X.; et al. Profiling of serum oxylipins identifies distinct spectrums and potential biomarkers in young people with very early onset gout. Rheumatology 2023, 62, 1972–1979. [Google Scholar]
- Le, D.E.; García-Jaramillo, M.; Bobe, G.; Magana, A.A.; Vaswani, A.; Minnier, J.; Jump, D.B.; Rinkevich, D.; Alkayed, N.J.; Maier, C.S.; et al. Plasma Oxylipins: A Potential Risk Assessment Tool in Atherosclerotic Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 645786. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Vilahur, G.; Rocca, B.; Patrono, C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc. Res. 2021, 117, 2001–2015. [Google Scholar] [CrossRef]
- Hariri, E.; Kakouros, N.; Bunsick, D.A.; Russell, S.D.; Mudd, J.O.; Laws, K.; Lake, M.W.; Rade, J.J. Nonplatelet thromboxane generation is associated with impaired cardiovascular performance and mortality in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H248–H255. [Google Scholar] [PubMed]
- Bäck, M.; Yurdagul, A., Jr.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Heintz, M.M.; Eccles, J.A.; Olack, E.M.; Maner-Smith, K.M.; Ortlund, E.A.; Baldwin, W.S. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS ONE 2022, 17, e0277053. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Jung, E.S.; Suh, D.H.; Jeong, S.J.; Kim, K.; Chon, S.; Yu, S.-Y.; Woo, J.-T.; Lee, C.H. Plasma amino acids and oxylipins as potential multi-biomarkers for predicting diabetic macular edema. Sci. Rep. 2021, 11, 9727. [Google Scholar] [CrossRef]
- Yuan, Z.X.; Majchrzak-Hong, S.; Keyes, G.S.; Iadarola, M.J.; Mannes, A.J.; Ramsden, C.E. Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 6009–6029. [Google Scholar] [PubMed]
- Fu, X.; Yin, H.-H.; Wu, M.-J.; He, X.; Jiang, Q.; Zhang, L.-T.; Liu, J.-Y. High Sensitivity and Wide Linearity LC-MS/MS Method for Oxylipin Quantification in Multiple Biological Samples. J. Lipid Res. 2022, 63, 100302. [Google Scholar] [CrossRef]
- Blum, M.; Dogan, I.; Karber, M.; Rothe, M.; Schunck, W.H. Chiral lipidomics of monoepoxy and monohydroxy metabolites derived from long-chain polyunsaturated fatty acids. J. Lipid Res. 2019, 60, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.A.; Kim, H.Y. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim. Biophys. Acta 2015, 1851, 356–365. [Google Scholar] [CrossRef]
- Spickett, C.M.; Pitt, A.R. Oxidative lipidomics coming of age: Advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox Signal 2015, 22, 1646–1666. [Google Scholar] [CrossRef]
- Yang, J.; Schmelzer, K.; Georgi, K.; Hammock, B.D. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 2009, 81, 8085–8093. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Yuan, Z.-X.; Horowitz, M.S.; Zamora, D.; Majchrzak-Hong, S.F.; Muhlhausler, B.S.; Taha, A.Y.; Makrides, M.; Gibson, R.A. Temperature and time-dependent effects of delayed blood processing on oxylipin concentrations in human plasma. Prostaglandins Leukot. Essent. Fat. Acids 2019, 150, 31–37. [Google Scholar] [CrossRef]
- Lee, Y.H.; Cui, L.; Fang, J.; Chern, B.S.; Tan, H.H.; Chan, J.K. Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis—A targeted ‘omics study. Sci. Rep. 2016, 6, 26117. [Google Scholar] [CrossRef]
- Frömel, T.; Jungblut, B.; Hu, J.; Trouvain, C.; Barbosa-Sicard, E.; Popp, R.; Liebner, S.; Dimmeler, S.; Hammock, B.D.; Fleming, I. Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols. Proc. Natl. Acad. Sci. USA 2012, 109, 9995–10000. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhang, Q. Quantification of Plasma Oxylipins Using Solid-Phase Extraction and Reversed-Phase Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Methods Mol. Biol. 2021, 2306, 171–186. [Google Scholar] [PubMed]
- Martin-Venegas, R.; Jáuregui, O.; Moreno, J.J. Liquid chromatography-tandem mass spectrometry analysis of eicosanoids and related compounds in cell models. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Elabdeen, H.R.; Mustafa, M.; Szklenar, M.; Rühl, R.; Ali, R.; Bolstad, A.I. Ratio of pro-resolving and pro-inflammatory lipid mediator precursors as potential markers for aggressive periodontitis. PLoS ONE 2013, 8, e70838. [Google Scholar] [CrossRef] [PubMed]
- Satomi, Y.; Hirayama, M.; Kobayashi, H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1063, 93–100. [Google Scholar]
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from sample preparation to data analysis: A primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Rund, K.M.; Ostermann, A.I.; Kutzner, L.; Galano, J.-M.; Oger, C.; Vigor, C.; Wecklein, S.; Seiwert, N.; Durand, T.; Schebb, N.H. Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal. Chim. Acta 2018, 1037, 63–74. [Google Scholar]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.-P.; Holmes, E.; Nicholson, J.K.; Dumas, M.-E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef]
- Ostermann, A.I.; Koch, E.; Rund, K.M.; Kutzner, L.; Mainka, M.; Schebb, N.H. Targeting esterified oxylipins by LC-MS—Effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediat. 2020, 146, 106384. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, A.I.; Willenberg, I.; Schebb, N.H. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 1403–1414. [Google Scholar] [CrossRef]
- Ferrer Amate, C.; Unterluggauer, H.; Fischer, R.J.; Fernández-Alba, A.R.; Masselter, S. Development and validation of a LC-MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. Anal. Bioanal. Chem. 2010, 397, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, H.; Han, Y.; Wang, Y.; Gong, J.; Gao, K.; Li, W.; Zhang, H.; Wang, J.; Qiu, X.; et al. A rapid and high-throughput approach to quantify non-esterified oxylipins for epidemiological studies using online SPE-LC-MS/MS. Anal. Bioanal. Chem. 2020, 412, 7989–8001. [Google Scholar] [CrossRef]
- Solati, Z.; Ravandi, A. Lipidomics of Bioactive Lipids in Acute Coronary Syndromes. Int. J. Mol. Sci. 2019, 20, 1051. [Google Scholar] [CrossRef]
- Hildreth, K.; Kodani, S.D.; Hammock, B.D.; Zhao, L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: A review of recent studies. J. Nutr. Biochem. 2020, 86, 108484. [Google Scholar] [CrossRef]
- Cambiaggi, L.; Chakravarty, A.; Noureddine, N.; Hersberger, M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int. J. Mol. Sci. 2023, 24, 6110. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Aukema, H.M.; Ravandi, A.; Lavallée, R.; Guzman, R.; Pierce, G.N. Specific plasma oxylipins increase the odds of cardiovascular and cerebrovascular events in patients with peripheral artery disease. Can. J. Physiol. Pharmacol. 2017, 95, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Shoieb, S.M.; El-Kadi, A.O.S. Resveratrol attenuates angiotensin II-induced cellular hypertrophy through the inhibition of CYP1B1 and the cardiotoxic mid-chain HETE metabolites. Mol. Cell Biochem. 2020, 471, 165–176. [Google Scholar] [CrossRef]
- Rocic, P.; Schwartzman, M.L. 20-HETE in the regulation of vascular and cardiac function. Pharmacol. Ther. 2018, 192, 74–87. [Google Scholar] [CrossRef]
- Zhang, H.J.; Sun, C.H.; Kuang, H.Y.; Jiang, X.Y.; Liu, H.L.; Hua, W.F.; Liu, Z.J.; Zhou, H.; Sui, H.; Qi, R. 12S-hydroxyeicosatetraenoic acid levels link to coronary artery disease in Type 2 diabetic patients. J. Endocrinol. Invest. 2013, 36, 385–389. [Google Scholar]
- Zu, L.; Guo, G.; Zhou, B.; Gao, W. Relationship between metabolites of arachidonic acid and prognosis in patients with acute coronary syndrome. Thromb. Res. 2016, 144, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Cai, W.; Cheng, Q.; Ai, D.; Wang, X.; Hammock, B.D.; Zhu, Y.; Zhang, X. Omega-3 PUFA attenuate mice myocardial infarction injury by emerging a protective eicosanoid pattern. Prostaglandins Other Lipid Mediat. 2018, 139, 1–9. [Google Scholar] [CrossRef]
- Seubert, J.M.; Sinal, C.J.; Graves, J.; DeGraff, L.M.; Bradbury, J.A.; Lee, C.R.; Goralski, K.; Carey, M.A.; Luria, A.; Newman, J.W.; et al. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ. Res. 2006, 99, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fang, J.; Zou, L.; Cui, L.; Liang, X.; Lim, S.G.; Dan, Y.-Y.; Ong, C.N. Omega-6-derived oxylipin changes in serum of patients with hepatitis B virus-related liver diseases. Metabolomics 2018, 14, 26. [Google Scholar]
- Massey, K.A.; Nicolaou, A. Lipidomics of oxidized polyunsaturated fatty acids. Free Radic. Biol. Med. 2013, 59, 45–55. [Google Scholar] [CrossRef]
- Mainka, M.; Dalle, C.; Pétéra, M.; Dalloux-Chioccioli, J.; Kampschulte, N.; Ostermann, A.I.; Rothe, M.; Bertrand-Michel, J.; Newman, J.W.; Gladine, C.; et al. Harmonized procedures lead to comparable quantification of total oxylipins across laboratories. J. Lipid Res. 2020, 61, 1424–1436. [Google Scholar] [CrossRef]
- Wang, Y.; Armando, A.M.; Quehenberger, O.; Yan, C.; Dennis, E.A. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J. Chromatogr. A 2014, 1359, 60–69. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; A Byrne, R.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Nayeem, M.A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef] [PubMed]
- Sirish, P.; Li, N.; Liu, J.-Y.; Lee, K.S.S.; Hwang, S.H.; Qiu, H.; Zhao, C.; Ma, S.M.; López, J.E.; Hammock, B.D.; et al. Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc. Natl. Acad. Sci. USA 2013, 110, 5618–5623. [Google Scholar] [CrossRef]
- Seubert, J.; Yang, B.; Bradbury, J.A.; Graves, J.; Degraff, L.M.; Gabel, S.; Gooch, R.; Foley, J.; Newman, J.; Mao, L.; et al. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ. Res. 2004, 95, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.-M.; Chen, J.-F.; Yang, C.-A.; Xiu, L.; Yang, H.-C.; Shyur, L.-F.; Pan, W.-H. Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study. Metabolites 2022, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Baigent, C. Role of aspirin in primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 2019, 16, 675–686. [Google Scholar] [CrossRef] [PubMed]








| MeOH | ACN | MTBE | EA | mSPE | |
|---|---|---|---|---|---|
| Soft suppression | 31 | 14 | 5 | 2 | 12 |
| Medium suppression | 2 | 8 | 0 | 3 | 0 |
| Strong suppression | 6 | 11 | 1 | 1 | 0 |
| Soft enhancement | 4 | 9 | 14 | 5 | 24 |
| Medium enhancement | 0 | 0 | 6 | 20 | 7 |
| Strong enhancement | 0 | 0 | 7 | 8 | 6 |
| AUC | Optimal Cut-Point Value | Sensitivity | Specificity | Cut-Off | SD | p | 95%CI | |
|---|---|---|---|---|---|---|---|---|
| 11-HETE | 0.948 | 0.869 | 0.933 | 0.935 | 0.282 | 0.030 | <0.001 ** | 0.890~1.007 |
| 15-HETE | 0.968 | 0.934 | 0.967 | 0.968 | 1.096 | 0.024 | <0.001 ** | 0.920~1.015 |
| 5-HETE | 0.970 | 0.833 | 0.833 | 1.000 | 1.554 | 0.017 | <0.001 ** | 0.936~1.004 |
| 5.6-DiHETrE | 0.734 | 0.440 | 0.633 | 0.806 | 0.341 | 0.066 | 0.002 ** | 0.606~0.863 |
| TXB2 | 0.838 | 0.604 | 0.733 | 0.871 | 0.430 | 0.051 | <0.001 ** | 0.737~0.938 |
| 12,13-EpOME | 0.651 | 0.253 | 0.419 | 0.833 | 0.520 | 0.070 | 0.043 * | 0.513~0.788 |
| 9,10-DiHOME | 0.706 | 0.470 | 0.903 | 0.567 | 7.444 | 0.068 | 0.006 ** | 0.573~0.840 |
| Integrated Biomarker | 0.990 | 0.967 | 1.000 | 0.967 | 0.121 | 0.010 | <0.001 ** | 0.970~1.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, Y.; Fang, Z.; Li, Z.; Liu, Y.; Bai, Y.; Wang, X.; Yang, H.; Guo, N. Comprehensive Analysis of Different Subtypes of Oxylipins to Determine a LC–MS/MS Approach in Clinical Research. Metabolites 2026, 16, 4. https://doi.org/10.3390/metabo16010004
Zhao Y, Fang Z, Li Z, Liu Y, Bai Y, Wang X, Yang H, Guo N. Comprehensive Analysis of Different Subtypes of Oxylipins to Determine a LC–MS/MS Approach in Clinical Research. Metabolites. 2026; 16(1):4. https://doi.org/10.3390/metabo16010004
Chicago/Turabian StyleZhao, Yurou, Zhengyu Fang, Zeyu Li, Yizhe Liu, Yang Bai, Xiaoqing Wang, Hongjun Yang, and Na Guo. 2026. "Comprehensive Analysis of Different Subtypes of Oxylipins to Determine a LC–MS/MS Approach in Clinical Research" Metabolites 16, no. 1: 4. https://doi.org/10.3390/metabo16010004
APA StyleZhao, Y., Fang, Z., Li, Z., Liu, Y., Bai, Y., Wang, X., Yang, H., & Guo, N. (2026). Comprehensive Analysis of Different Subtypes of Oxylipins to Determine a LC–MS/MS Approach in Clinical Research. Metabolites, 16(1), 4. https://doi.org/10.3390/metabo16010004

