NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance
Abstract
1. Background: Nuclear Magnetic Resonance (NMR) Spectroscopy
2. Metabolism in Brain Cancer
2.1. Gliomas
2.1.1. Glioblastoma
2.1.2. Astrocytoma
2.1.3. Oligodendroglioma
2.1.4. Ependymoma
2.2. Medulloblastoma
2.3. Primary Central Nervous System Lymphoma (PCNSL)
2.4. Leptomeningeal Carcinomatosis
2.5. Pituitary Tumors
2.6. Meningiomas
2.7. Peripheral and Central Nerve Tumors
2.8. Dysembryoplastic Neuroepithelial Tumor (DNET)
2.9. Other Embryonal Tumors (Not Medulloblastoma)
2.9.1. Central Nervous System Atypical Teratoid/Rhabdoid Tumor
2.9.2. Embryonal Tumor with Multilayered Rosettes (ETMR)
3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab. 2007, 6, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodado, V.; Brender, J.R.; Cherukuri, M.K.; Gilbert, M.R.; Larion, M. Magnetic resonance spectroscopy for the study of cns malignancies. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 122, 23–41. [Google Scholar] [CrossRef]
- Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef]
- Hyder, F.; Rothman, D.L.; Bennett, M.R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA 2013, 110, 3549–3554. [Google Scholar] [CrossRef]
- Siegel, G.J. Basic Neurochemistry Molecular, Cellular, and Medical Aspects, 6th ed.; Lippincott Williams & Wilkins: Ambler, PA, USA, 1999; p. xxi, 1183. [Google Scholar]
- Nehlig, A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 265–275. [Google Scholar] [CrossRef]
- Belanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef]
- van Hall, G.; Stromstad, M.; Rasmussen, P.; Jans, O.; Zaar, M.; Gam, C.; Quistorff, B.; Secher, N.H.; Nielsen, H.B. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009, 29, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Stobart, J.L.; Anderson, C.M. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front. Cell. Neurosci. 2013, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Marie, S.K.; Shinjo, S.M. Metabolism and brain cancer. Clinics 2011, 66 (Suppl. S1), 33–43. [Google Scholar] [CrossRef]
- Salzillo, T.C.; Hu, J.; Nguyen, L.; Whiting, N.; Lee, J.; Weygand, J.; Dutta, P.; Pudakalakatti, S.; Millward, N.Z.; Gammon, S.T.; et al. Interrogating Metabolism in Brain Cancer. Magn. Reson. Imaging Clin. N. Am. 2016, 24, 687–703. [Google Scholar] [CrossRef]
- Pandey, R.; Caflisch, L.; Lodi, A.; Brenner, A.J.; Tiziani, S. Metabolomic signature of brain cancer. Mol. Carcinog. 2017, 56, 2355–2371. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Pournik, O.; Lim Choi Keung, S.N.; Arvanitis, T.N. Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancers 2023, 15, 3523. [Google Scholar] [CrossRef]
- Fernandes, R.T.; Teixeira, G.R.; Mamere, E.C.; Bandeira, G.A.; Mamere, A.E. The 2021 World Health Organization classification of gliomas: An imaging approach. Radiol. Bras. 2023, 56, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System tumours: A practical update on what neurosurgeons need to know-a minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012. Neuro Oncol. 2015, 17 (Suppl. S4), iv1–iv62. [Google Scholar] [CrossRef]
- Perry, A.; Wesseling, P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016, 134, 71–95. [Google Scholar] [CrossRef]
- Cuperlovic-Culf, M.; Ferguson, D.; Culf, A.; Morin, P., Jr.; Touaibia, M. 1H NMR metabolomics analysis of glioblastoma subtypes: Correlation between metabolomics and gene expression characteristics. J. Biol. Chem. 2012, 287, 20164–20175. [Google Scholar] [CrossRef]
- Kelimu, A.; Xie, R.; Zhang, K.; Zhuang, Z.; Mamtimin, B.; Sheyhidin, I. Metabonomic signature analysis in plasma samples of glioma patients based on (1)H-nuclear magnetic resonance spectroscopy. Neurol. India 2016, 64, 246–251. [Google Scholar] [CrossRef]
- Pudakalakatti, S.; Audia, A.; Mukhopadhyay, A.; Enriquez, J.S.; Bourgeois, D.; Tayob, N.; Zacharias, N.M.; Millward, S.W.; Carson, D.; Farach-Carson, M.C.; et al. NMR Spectroscopy-Based Metabolomics of Platelets to Analyze Brain Tumors. Reports 2021, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Lowder, L.; Hauenstein, J.; Woods, A.; Chen, H.R.; Rupji, M.; Kowalski, J.; Olson, J.J.; Saxe, D.; Schniederjan, M.; Neill, S.; et al. Gliosarcoma: Distinct molecular pathways and genomic alterations identified by DNA copy number/SNP microarray analysis. J. Neurooncol. 2019, 143, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Raab, P.; Pilatus, U.; Hattingen, E.; Franz, K.; Hermann, E.; Zanella, F.E.; Lanfermann, H. Spectroscopic Characterization of Gliosarcomas-Do They Differ From Glioblastomas and Metastases? J. Comput. Assist. Tomogr. 2016, 40, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Hvinden, I.C.; Berg, H.E.; Sachse, D.; Skaga, E.; Skottvoll, F.S.; Lundanes, E.; Sandberg, C.J.; Vik-Mo, E.O.; Rise, F.; Wilson, S.R. Nuclear Magnetic Resonance Spectroscopy to Identify Metabolite Biomarkers of Nonresponsiveness to Targeted Therapy in Glioblastoma Tumor Stem Cells. J. Proteome Res. 2019, 18, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Salzillo, T.C.; Mawoneke, V.; Weygand, J.; Shetty, A.; Gumin, J.; Zacharias, N.M.; Gammon, S.T.; Piwnica-Worms, D.; Fuller, G.N.; Logothetis, C.J.; et al. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021, 10, 2621. [Google Scholar] [CrossRef]
- Watanabe, T.; Nobusawa, S.; Kleihues, P.; Ohgaki, H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 2009, 174, 1149–1153. [Google Scholar] [CrossRef]
- Hodges, T.R.; Choi, B.D.; Bigner, D.D.; Yan, H.; Sampson, J.H. Isocitrate dehydrogenase 1: What it means to the neurosurgeon: A review. J. Neurosurg. 2013, 118, 1176–1180. [Google Scholar] [CrossRef]
- Yang, H.; Ye, D.; Guan, K.L.; Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: Mechanistic insights and clinical perspectives. Clin. Cancer Res. 2012, 18, 5562–5571. [Google Scholar] [CrossRef]
- Chen, X.; Yang, P.; Qiao, Y.; Ye, F.; Wang, Z.; Xu, M.; Han, X.; Song, L.; Wu, Y.; Ou, W.B. Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2. Sci. Rep. 2022, 12, 18830. [Google Scholar] [CrossRef]
- Lee, J.E.; Jeun, S.S.; Kim, S.H.; Yoo, C.Y.; Baek, H.-M.; Yang, S.H. Metabolic profiling of human gliomas assessed with NMR. J. Clin. Neurosci. 2019, 68, 275–280. [Google Scholar] [CrossRef]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Bornhorst, M.; Frappaz, D.; Packer, R.J. Pilocytic astrocytomas. Handb. Clin. Neurol. 2016, 134, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Collins, V.P.; Jones, D.T.; Giannini, C. Pilocytic astrocytoma: Pathology, molecular mechanisms and markers. Acta Neuropathol. 2015, 129, 775–788. [Google Scholar] [CrossRef]
- Cuellar-Baena, S.; Morales, J.M.; Martinetto, H.; Calvar, J.; Sevlever, G.; Castellano, G.; Cerda-Nicolas, M.; Celda, B.; Monleon, D. Comparative metabolic profiling of paediatric ependymoma, medulloblastoma and pilocytic astrocytoma. Int. J. Mol. Med. 2010, 26, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Van den Bent, M.J.; Reni, M.; Gatta, G.; Vecht, C. Oligodendroglioma. Crit. Rev. Oncol. Hematol. 2008, 66, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Erb, G.; Elbayed, K.; Piotto, M.; Raya, J.; Neuville, A.; Mohr, M.; Maitrot, D.; Kehrli, P.; Namer, I.J. Toward improved grading of malignancy in oligodendrogliomas using metabolomics. Magn. Reson. Med. 2008, 59, 959–965. [Google Scholar] [CrossRef]
- Zamora, E.A.; Alkherayf, F. Ependymoma; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bennett, C.D.; Kohe, S.E.; Gill, S.K.; Davies, N.P.; Wilson, M.; Storer, L.C.D.; Ritzmann, T.; Paine, S.M.L.; Scott, I.S.; Nicklaus-Wollenteit, I.; et al. Tissue metabolite profiles for the characterisation of paediatric cerebellar tumours. Sci. Rep. 2018, 8, 11992. [Google Scholar] [CrossRef]
- Kohe, S.; Bennett, C.; Burté, F.; Adiamah, M.; Rose, H.; Worthington, L.; Scerif, F.; MacPherson, L.; Gill, S.; Hicks, D.; et al. Metabolite profiles of medulloblastoma for rapid and non-invasive detection of molecular disease groups. EBioMedicine 2024, 100, 104958. [Google Scholar] [CrossRef]
- Chen, W.; Lou, H.; Zhang, H.; Nie, X.; Lan, W.; Yang, Y.; Xiang, Y.; Qi, J.; Lei, H.; Tang, H.; et al. Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition. Sci. China Life Sci. 2011, 54, 606–616. [Google Scholar] [CrossRef]
- Hekmatyar, S.K.; Wilson, M.; Jerome, N.; Salek, R.M.; Griffin, J.L.; Peet, A.; Kauppinen, R.A. ¹H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br. J. Cancer 2010, 103, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Graziani, V.; Garcia, A.R.; Alcolado, L.S.; Le Guennec, A.; Henriksson, M.A.; Conte, M.R. Metabolic rewiring in MYC-driven medulloblastoma by BET-bromodomain inhibition. Sci. Rep. 2023, 13, 1273. [Google Scholar] [CrossRef]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.R.; Wen, H.; Ryu, Y.J.; An, Y.J.; Kim, H.C.; Moon, W.K.; Han, M.H.; Park, S.; Choi, S.H. An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis. Cancer Res. 2012, 72, 5179–5187. [Google Scholar] [CrossRef]
- Green, K.; Munakomi, S.; Hogg, J.P. Central Nervous System Lymphoma; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Kim, J.H.; An, Y.J.; Kim, T.M.; Kim, J.E.; Park, S.; Choi, S.H. Ex vivo NMR metabolomics approach using cerebrospinal fluid for the diagnosis of primary CNS lymphoma: Correlation with MR imaging characteristics. Cancer Med. 2023, 12, 4679–4689. [Google Scholar] [CrossRef]
- An, Y.J.; Cho, H.R.; Kim, T.M.; Keam, B.; Kim, J.W.; Wen, H.; Park, C.K.; Lee, S.H.; Im, S.A.; Kim, J.E.; et al. An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients. Int. J. Cancer 2015, 136, 162–171. [Google Scholar] [CrossRef]
- Melmed, S. Mechanisms for pituitary tumorigenesis: The plastic pituitary. J. Clin. Investig. 2003, 112, 1603–1618. [Google Scholar] [CrossRef]
- Donangelo, I.; Melmed, S. Pathophysiology of pituitary adenomas. J. Endocrinol. Investig. 2005, 28, 100–105. [Google Scholar]
- Freda, P.U.; Wardlaw, S.L. Clinical review 110: Diagnosis and treatment of pituitary tumors. J. Clin. Endocrinol. Metab. 1999, 84, 3859–3866. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.L.; Shockcor, J.P. Metabolic profiles of cancer cells. Nat. Rev. Cancer 2004, 4, 551–561. [Google Scholar] [CrossRef]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef]
- Ijare, O.B.; Baskin, D.S.; Pichumani, K. Ex Vivo (1)H NMR study of pituitary adenomas to differentiate various immunohistochemical subtypes. Sci. Rep. 2019, 9, 3007. [Google Scholar] [CrossRef]
- Fathi, A.R.; Roelcke, U. Meningioma. Curr. Neurol. Neurosci. Rep. 2013, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Nowosielski, M.; Galldiks, N.; Iglseder, S.; Kickingereder, P.; von Deimling, A.; Bendszus, M.; Wick, W.; Sahm, F. Diagnostic challenges in meningioma. Neuro-Oncology 2017, 19, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Jadhav, P.A.; Maitra, A.; Banerjee, A.; Hole, A.; Epari, S.; Shetty, P.; Moiyadi, A.; Chilkapati, M.K.; Srivastava, S. Serum Metabolomics Profiling Coupled with Machine Learning Identifies Potential Diagnostic and Prognostic Candidate Markers in Meningioma Using Raman Spectroscopy, ATR-FTIR, and LC-MS/MS. J. Proteome Res. 2025, 24, 1180–1196. [Google Scholar] [CrossRef]
- Pellerino, A.; Verdijk, R.M.; Nichelli, L.; Andratschke, N.H.; Idbaih, A.; Goldbrunner, R. Diagnosis and Treatment of Peripheral and Cranial Nerve Tumors with Expert Recommendations: An EUropean Network for RAre CANcers (EURACAN) Initiative. Cancers 2023, 15, 1930. [Google Scholar] [CrossRef]
- Fayad, L.M.; Wang, X.; Blakeley, J.O.; Durand, D.J.; Jacobs, M.A.; Demehri, S.; Subhawong, T.K.; Soldatos, T.; Barker, P.B. Characterization of peripheral nerve sheath tumors with 3T proton MR spectroscopy. AJNR Am. J. Neuroradiol. 2014, 35, 1035–1041. [Google Scholar] [CrossRef]
- Shao, W.; Gu, J.; Huang, C.; Liu, D.; Huang, H.; Huang, Z.; Lin, Z.; Yang, W.; Liu, K.; Lin, D.; et al. Malignancy-associated metabolic profiling of human glioma cell lines using 1H NMR spectroscopy. Mol. Cancer 2014, 13, 197. [Google Scholar] [CrossRef]
- Phi, J.H.; Kim, S.H. Dysembryoplastic Neuroepithelial Tumor: A Benign but Complex Tumor of the Cerebral Cortex. Brain Tumor Res. Treat. 2022, 10, 144–150. [Google Scholar] [CrossRef]
- Detour, J.; Bund, C.; Behr, C.; Cebula, H.; Cicek, E.A.; Valenti-Hirsch, M.P.; Lannes, B.; Lhermitte, B.; Nehlig, A.; Kehrli, P.; et al. Metabolomic characterization of human hippocampus from drug-resistant epilepsy with mesial temporal seizure. Epilepsia 2018, 59, 607–616. [Google Scholar] [CrossRef]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef]
- Park, M.; Han, J.W.; Hahn, S.M.; Lee, J.A.; Kim, J.Y.; Shin, S.H.; Kim, D.S.; Yoon, H.I.; Hong, K.T.; Choi, J.Y.; et al. Atypical Teratoid/Rhabdoid Tumor of the Central Nervous System in Children under the Age of 3 Years. Cancer Res. Treat. 2021, 53, 378–388. [Google Scholar] [CrossRef]
- Lambo, S.; von Hoff, K.; Korshunov, A.; Pfister, S.M.; Kool, M. ETMR: A tumor entity in its infancy. Acta Neuropathol. 2020, 140, 249–266. [Google Scholar] [CrossRef]
- Wang, B.; Gogia, B.; Fuller, G.N.; Ketonen, L.M. Embryonal Tumor with Multilayered Rosettes, C19MC-Altered: Clinical, Pathological, and Neuroimaging Findings. J. Neuroimaging 2018, 28, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Resurreccion, E.P.; Fong, K.W. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Howarth, A.; Ermanis, K.; Goodman, J.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure. Chem. Sci. 2020, 11, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Hansen, A.L.; Yuan, C.; Bruschweiler-Li, L.; Bruschweiler, R. DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra. Nat. Commun. 2021, 12, 5229. [Google Scholar] [CrossRef]
Cancer Type | Compared to | Sample Used | Increased Metabolites | Decreased Metabolites | References |
---|---|---|---|---|---|
Glioblastoma | Normal | Human Urine and Blood | Phospholipids and total cholesterol | [19] | |
Glioblastoma | Normal | Platelet | Lactate, acetate, glutamine, glutamate, succinate, alanine, and pyruvate | [21] | |
Glioblastoma | Astrocytoma and oligodendroglioma | Human brain tumor | myo-inositol | [28] | |
Pilocytic astrocytoma | Medulloblastomas and ependymomas | Pediatric Tumor Tissue | Leucine, isoleucine, valine, NAA, fatty acids, glutamine, hypotaurine | Choline, PC, GPC, creatine, and MI | [34] |
High-Grade Oligodendroglioma | Low-grade Oligodendroglioma | Human Tissue | Alanine, valine | Glutamate, glutamine, GABA, NAA, proline | [36] |
Low-Grade Oligodendroglioma | High-grade oligodendroglioma | Human Tissue | Proline, glutamate, glutamine, GABA, NAA | [36] | |
Ependymoma | Medulloblastoma and Pilocytic astrocytoma | Human tissue | MI and glutathione | GABA, PC, GPC, and leucine | [34,36] |
Medulloblastoma | Normal | Human Tissue | Taurine, MI, choline, PC, and GPC | [38] | |
Medulloblastoma | Ependymoma, pilocytic astrocytoma | Human tissue | Ascorbate, aspartate, PC, taurine, and lipids | Glucose and scyllo-inositol | [39] |
Primary central nervous system lymphoma | Normal | Cerebral Spinal Fluid | Lactate, citrate, alanine | choline, creatine, glucose, glutamine, malonate, and MI | [46] |
Leptomeningeal Carcinomatosis | Normal | Rat cerebral Spinal Fluid | Lactate, creatine, acetate | glucose | [44] |
Leptomeningeal Carcinomatosis | Normal | Cerebral spinal fluid | Citrate, alanine, and lactate | MI and creatine | [47] |
Prolactinomas | ACTH-Secreting Tumors | Human Tissue | glumatamine | NAA, MI, glycine, taurine | [51] |
ACTH-Secreting Tumors | Prolactinomas | Human Tissue | Aspartate | Glycine, phosphoethanolamine | [51] |
Meningiomas | Normal | Human Serum | Choline | GPC, leucine, lysine, creatine | [57] |
Peripheral and central nerve tumors | Astrocytoma | Human Cell Lines | Choline, PC, GPC, lactate | Creatine | [60] |
Dysembryoplastic Neuroepithelial Tumor | Normal | Human Cell Lines | Lactate, alanine, ascorbate, and arginine | Glutathione, acetate, and glutamine | [62] |
Central Nervous System Atypical Teratoid | Medulloblastoma | Human Tissue | Creatine | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zickus, J.R.; Enriquez, J.S.; Smith, P.; Sun, B.T.; Wang, M.; Morales, A.; Bhattacharya, P.K.; Pudakalakatti, S. NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance. Metabolites 2025, 15, 607. https://doi.org/10.3390/metabo15090607
Zickus JR, Enriquez JS, Smith P, Sun BT, Wang M, Morales A, Bhattacharya PK, Pudakalakatti S. NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance. Metabolites. 2025; 15(9):607. https://doi.org/10.3390/metabo15090607
Chicago/Turabian StyleZickus, Julia R., José S. Enriquez, Paytience Smith, Bill T. Sun, Muxin Wang, Aldo Morales, Pratip K. Bhattacharya, and Shivanand Pudakalakatti. 2025. "NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance" Metabolites 15, no. 9: 607. https://doi.org/10.3390/metabo15090607
APA StyleZickus, J. R., Enriquez, J. S., Smith, P., Sun, B. T., Wang, M., Morales, A., Bhattacharya, P. K., & Pudakalakatti, S. (2025). NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance. Metabolites, 15(9), 607. https://doi.org/10.3390/metabo15090607