Cross-Sectional and Longitudinal Assessment of Sociodemographic and Lifestyle Determinants of Metabolic Syndrome and Hypertriglyceridemic Waist Phenotypes in 139,634 Spanish Workers
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participant Selection
2.2. Inclusion Criteria
- Aged between 18 and 69 years, representing the working-age population.
- Actively employed by one of the participating companies and not on medical leave at the time of data collection.
- Availability of complete data required for the calculation of cardiovascular risk metrics.
- Provision of informed consent for the use of anonymized data for epidemiological research.
- For inclusion in the longitudinal analysis: availability of complete records from both 2009 and 2019, with no major changes in sociodemographic or lifestyle characteristics over the study period.
2.3. Measurement and Data Collection Procedures
2.4. Definitions of Metabolic Syndrome
2.4.1. NCEP ATP III (National Cholesterol Education Program Adult Treatment Panel III)
- Waist circumference > 102 cm in men or >88 cm in women;
- Triglycerides ≥ 150 mg/dL or specific treatment for hypertriglyceridemia;
- Blood pressure ≥ 130/85 mmHg;
- HDL cholesterol < 40 mg/dL in men or <50 mg/dL in women, or specific treatment;
- Fasting glucose > 110 mg/dL or specific treatment for hyperglycemia.
2.4.2. International Diabetes Federation (IDF)
- Triglycerides ≥ 150 mg/dL or specific treatment for hypertriglyceridemia;
- Systolic blood pressure ≥ 130 mmHg or diastolic ≥ 85 mmHg, or previous diagnosis of hypertension under treatment;
- HDL cholesterol < 40 mg/dL in men or <50 mg/dL in women, or specific treatment for this lipid abnormality;
- Fasting glucose > 100 mg/dL or previous diagnosis of type 2 diabetes.
2.4.3. Joint Interim Statement (JIS)
- Waist circumference > 94 cm in men and > 80 cm in women;
- Triglycerides ≥ 150 mg/dL or specific treatment for hypertriglyceridemia;
- Systolic blood pressure ≥ 130 mmHg or diastolic ≥ 85 mmHg, or previous diagnosis of hypertension under treatment;
- HDL cholesterol < 40 mg/dL in men or <50 mg/dL in women, or specific treatment;
- Fasting glucose > 110 mg/dL or previous diagnosis of type 2 diabetes [16].
2.5. Lifestyle and Sociodemographic Variables
- Class I: University-educated professionals and senior executives;
- Class II: Skilled self-employed workers and intermediate-level positions;
- Class III: Manual laborers and unskilled workers.
2.6. Statistical Methods
3. Results
Men n = 83,282 | Women n = 56,352 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 41.4 (10.7) | 40.1 (10.4) | <0.001 |
Height (cm) | 173.8 (7.1) | 161.2 (6.5) | <0.001 |
Weight (kg) | 83.2 (14.6) | 66.3 (13.9) | <0.001 |
Systolic blood pressure (mmHg) | 126.2 (15.9) | 115.6 (15.7) | <0.001 |
Diastolic blood pressure (mmHg) | 76.6 (10.9) | 71.1 (10.7) | <0.001 |
Total cholesterol (mg/dL) | 199.6 (38.6) | 194.6 (36.9) | <0.001 |
HDL cholesterol (mg/dL) | 50.0 (7.7) | 54.7 (9.2) | <0.001 |
LDL cholesterol (mg/dL) | 122.6 (37.4) | 121.5 (37.1) | <0.001 |
Triglycerides (mg/dL) | 133.8 (95.6) | 90.8 (49.7) | <0.001 |
Glucose (mg/dL) | 93.0 (25.4) | 86.8 (18.1) | <0.001 |
% | % | p-value | |
< 30 years | 15.1 | 18.0 | <0.001 |
30–39 years | 29.6 | 31.0 | |
40–49 years | 30.2 | 30.3 | |
50–59 years | 20.9 | 17.7 | |
60–69 years | 4.2 | 3.0 | |
Social class I | 7.5 | 13.6 | <0.001 |
Social class II | 23.8 | 32.1 | |
Social class III | 68.7 | 54.1 | |
Elementary school | 66.4 | 48.1 | <0.001 |
High school | 26.9 | 40.0 | |
University | 6.7 | 11.9 | |
Non-smokers | 66.8 | 67.9 | <0.001 |
Smokers | 33.2 | 32.1 | |
Non-physical activity | 62.4 | 51.4 | <0.001 |
Yes physical activity | 37.6 | 48.6 | |
Non-Mediterranean diet | 65.8 | 52.8 | <0.001 |
Yes Mediterranean diet | 34.2 | 47.2 | |
Non-alcohol consumption | 67.3 | 84.4 | <0.001 |
Yes alcohol consumption | 32.7 | 15.6 |
Men n = 83,282 | Women n = 56,352 | ||
---|---|---|---|
Variables | Mean (SD) | Mean (SD) | p-Value |
Age (years) | 41.4 (10.7) | 40.1 (10.4) | <0.001 |
Height (cm) | 173.8 (7.1) | 161.2 (6.5) | <0.001 |
Weight (kg) | 83.2 (14.6) | 66.3 (13.9) | <0.001 |
Systolic blood pressure (mmHg) | 126.2 (15.9) | 115.6 (15.7) | <0.001 |
Diastolic blood pressure (mmHg) | 76.6 (10.9) | 71.1 (10.7) | <0.001 |
Total cholesterol (mg/dL) | 199.6 (38.6) | 194.6 (36.9) | <0.001 |
HDL-cholesterol (mg/dL) | 50.0 (7.7) | 54.7 (9.2) | <0.001 |
LDL-cholesterol (mg/dL) | 122.6 (37.4) | 121.5 (37.1) | <0.001 |
Triglycerides (mg/dL) | 133.8 (95.6) | 90.8 (49.7) | <0.001 |
Glucose (mg/dL) | 93.0 (25.4) | 86.8 (18.1) | <0.001 |
MS NCEP ATPIII | MS IDF | HTGW | ||
---|---|---|---|---|
Variables Men | n | % (95% CI) | % (95% CI) | % (95% CI) |
<30 years | 12,558 | 3.4 (3.1–3.7) | 5.0 (4.6–5.4) | 4.7 (4.3–5.1) |
30–39 years | 24,648 | 8.8 (8.4–9.2) | 11.8 (11.4–12.2) | 10.8 (10.4–11.2) |
40–49 years | 25,178 | 18.7 (18.2–19.2) | 23.2 (22.7–23.7) | 18.0 (17.5–18.5) |
50–59 years | 17,370 | 29.5 (28.8–30.2) | 32.7 (32.0–33.4) | 19.0 (18.4–19.6) |
60–69 years | 3528 | 44.9 (43.3–46.5) | 35.9 (34.3–37.5) | 20.1 (18.8–21.4) |
Social class I | 6234 | 13.6 (12.8–14.4) | 17.1 (16.2–18.0) | 10.0 (9.3–10.7) |
Social class II | 19,856 | 17.0 (16.4–17.6) | 19.0 (18.4–19.6) | 14.4 (13.9–14.9) |
Social class III | 57,192 | 17.3 (17.0–17.6) | 22.2 (21.8–22.6) | 15.5 (15.1–15.9) |
Elementary school | 55,306 | 20.9 (20.6–21.2) | 22.8 (22.5–23.1) | 14.3 (14.0–14.6) |
High school | 22,408 | 15.4 (15.0–15.8) | 18.5 (18.1–18.9) | 15.5 (15.1–15.9) |
University | 5568 | 14.5 (13.7–15.3) | 18.0 (17.1–18.9) | 10.3 (9.6–11.0) |
Non-smokers | 55,618 | 15.8 (15.5–16.1) | 19.4 (19.1–19.7) | 14.2 (13.9–14.5) |
Smokers | 27,664 | 19.0 (18.5–19.5) | 19.7 (19.2–20.2) | 14.6 (14.2–15.0) |
Non-physical activity | 51,984 | 26.4 (26.0–26.8) | 30.6 (30.2–31.0) | 23.0 (22.6–23.4) |
Yes physical activity | 31,298 | 0.9 (0.7–1.1) | 1.4 (1.2–1.6) | 2.3 (2.0–2.6) |
Non-Mediterranean diet | 54,792 | 25.0 (24.6–25.4) | 28.9 (28.5–29.3) | 21.8 (21.4–22.2) |
Yes Mediterranean diet | 28,490 | 1.2 (1.0–1.4) | 1.7 (1.5–1.9) | 3.4 (3.1–3.7) |
Non-alcohol consumption | 56,022 | 7.6 (7.3–7.9) | 8.8 (8.5–9.1) | 6.1 (5.8–6.4) |
Yes alcohol consumption | 27,260 | 35.8 (35.1–36.5) | 41.8 (41.1–42.5) | 31.3 (30.6–32.0) |
Variables Women | n | % (95% CI) | % (95% CI) | % (95% CI) |
<30 years | 10,110 | 1.4 (1.2–1.6) | 1.2 (1.0–1.4) | 0.9 (0.7–1.1) |
30–39 years | 17,460 | 3.4 (3.1–3.7) | 3.0 (2.7–3.3) | 1.6 (1.4–1.8) |
40–49 years | 17,094 | 8.3 (7.9–8.7) | 6.5 (6.1–6.9) | 2.9 (2.6–3.2) |
50–59 years | 9984 | 18.5 (17.7–19.3) | 12.0 (11.4–12.6) | 5.5 (5.1–5.9) |
60–69 years | 1704 | 29.0 (26.8–31.2) | 14.8 (13.1–16.5) | 6.1 (5.0–7.2) |
Social class I | 7632 | 3.3 (2.9–3.7) | 2.7 (2.3–3.1) | 1.3 (1.0–1.6) |
Social class II | 18,112 | 7.7 (7.3–8.1) | 6.1 (5.7–6.5) | 2.7 (2.4–3.0) |
Social class III | 30,608 | 9.3 (9.0–9.6) | 6.8 (6.5–7.1) | 3.1 (2.9–3.3) |
Elementary school | 27,086 | 9.6 (9.3–9.9) | 6.5 (6.2–6.8) | 3.2 (3.0–3.4) |
High school | 22,574 | 7.3 (7.0–7.6) | 5.6 (5.3–5.9) | 2.8 (2.6–3.0) |
University | 6692 | 3.4 (3.0–3.8) | 2.8 (2.4–3.2) | 1.0 (0.8–1.2) |
Non-smokers | 38,252 | 7.1 (6.8–7.4) | 4.9 (4.6–5.2) | 2.7 (2.5–2.9) |
Smokers | 18,100 | 8.4 (7.9–8.9) | 6.0 (5.6–6.4) | 2.8 (2.5–3.1) |
Non-physical activity | 28,962 | 15.2 (14.7–15.7) | 11.1 (10.6–11.6) | 5.3 (5.0–5.6) |
Yes physical activity | 27,390 | 0.3 (0.2–0.4) | 0.7 (0.5–0.9) | 0.5 (0.3–0.7) |
Non-Mediterranean diet | 29,764 | 14.4 (13.9–14.9) | 10.7 (10.2–11.2) | 5.2 (4.9–5.5) |
Yes Mediterranean diet | 26,588 | 0.4 (0.3–0.5) | 1.2 (1.0–1.4) | 0.9 (0.7–1.1) |
Non-alcohol consumption | 47,536 | 2.6 (2.4–2.8) | 1.9 (1.7–2.1) | 1.1 (0.9–1.3) |
Yes alcohol consumption | 8816 | 16.8 (16.0–17.6) | 16.6 (15.8–17.4) | 11.9 (11.2–12.6) |
MS NCEP ATPIII | MS IDF | HTGW | |
---|---|---|---|
Variables | OR (95% CI) | OR (95% CI) | OR (95% CI) |
Women | 1 | 1 | 1 |
Men | 1.61 (1.54–1.67) | 3.05 (2.92–3.19) | 4.25 (4.01–4.50) |
<30 years | 1 | 1 | 1 |
30–39 years | 1.87 (1.75–1.99) | 1.14 (1.09–1.24) | 1.23 (1.16–1.30) |
40–49 years | 2.70 (2.51–2.90) | 1.22 (1.17–1.28) | 1.77 (1.56–1.97) |
50–59 years | 4.38 (4.05–4.72) | 1.86 (1.72–2.01) | 2.23 (1.88–2.59) |
60–69 years | 7.90 (7.09–8.70) | 3.17 (2.86–3.49) | 3.42 (2.60–4.23) |
Social class I | 1 | 1 | 1 |
Social class II | 1.21 (1.15–1.27) | 1.19 (1.15–1.23) | 1.19 (1.13–1.25) |
Social class III | 1.93 (1.74–2.13) | 1.63 (1.49–1.77) | 1.88 (1.61–2.15) |
University | 1 | 1 | 1 |
High school | 1.25 (1.18–1.32) | 1.23 (1.18–1.28) | 1.14 (1.09–1.19) |
Elementary school | 2.05 (1.80–2.30) | 1.59 (1.50–1.69) | 2.15 (1.88–2.42) |
Non-smokers | 1 | 1 | 1 |
Smokers | 1.23 (1.18–1.29) | 1.25 (1.18–1.32) | 1.19 (1.14–1.25) |
Yes physical activity | 1 | 1 | 1 |
Non-physical activity | 10.50 (9.07–11.94) | 9.92 (8.61–11.23) | 12.33 (10.12–12.53) |
Yes Mediterranean diet | 1 | 1 | 1 |
Non-Mediterranean diet | 2.18 (1.91–2.46) | 2.07 (1.81–2.34) | 7.35 (6.03–8.67) |
Non-alcohol consumption | 1 | 1 | 1 |
Yes alcohol consumption | 4.53(4.35–4.72) | 4.52 (4.34–4.71) | 4.31 (4.12–4.51) |
MS NCEP ATPIII | MS IDF | HTGW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PRE | POST | PRE | POST | PRE | POST | |||||
Variables Men | n | % | % | Difference (%) | % | % | Difference (%) | % | % | Difference (%) |
<30 years | 3645 | 3.3 | 3.5 | 4.8 | 4.6 | 4.8 | 5.1 | 4.5 | 4.6 | 2.8 |
30–39 years | 6933 | 8.2 | 9.0 | 9.8 | 11.0 | 12.1 | 9.6 | 10.0 | 10.7 | 6.9 |
40–49 years | 7013 | 15.8 | 17.6 | 11.3 | 20.7 | 22.9 | 10.8 | 16.1 | 17.8 | 10.8 |
50–59 years | 4952 | 22.9 | 27.8 | 21.2 | 26.6 | 31.9 | 20.1 | 16.3 | 19.2 | 17.8 |
Social class I | 1760 | 7.8 | 8.5 | 8.5 | 9.7 | 10.2 | 5.2 | 5.5 | 5.8 | 5.6 |
Social class II | 5368 | 11.8 | 13.2 | 11.8 | 15.4 | 16.8 | 8.8 | 9.7 | 10.6 | 9.5 |
Social class III | 15,415 | 14.9 | 17.4 | 16.9 | 22.7 | 25.9 | 13.9 | 16.8 | 19.9 | 18.2 |
Elementary school | 14,914 | 14.5 | 17.0 | 17.0 | 21.8 | 24.8 | 14.0 | 16.5 | 19.5 | 18.0 |
High school | 6053 | 11.6 | 13.0 | 12.0 | 16.3 | 17.7 | 8.7 | 10.2 | 11.2 | 9.6 |
University | 1576 | 7.6 | 8.2 | 8.3 | 10.0 | 10.5 | 5.3 | 5.7 | 6.0 | 5.7 |
Non-smokers | 15,122 | 11.6 | 12.5 | 8.0 | 13.9 | 14.8 | 6.2 | 9.4 | 10.1 | 7.5 |
Smokers | 7421 | 16.9 | 19.8 | 17.2 | 20.7 | 23.8 | 14.8 | 17.7 | 19.9 | 12.4 |
Yes physical activity | 8535 | 4.4 | 4.6 | 5.0 | 6.3 | 6.5 | 3.3 | 4.9 | 5.1 | 3.3 |
Non-physical activity | 14,008 | 27.1 | 31.9 | 17.9 | 22.4 | 25.9 | 15.5 | 20.1 | 23.4 | 16.2 |
Yes Mediterranean diet | 7767 | 6.1 | 6.5 | 5.7 | 7.6 | 7.9 | 3.9 | 6.6 | 6.9 | 3.9 |
Non-Mediterranean diet | 14,776 | 25.7 | 29.8 | 16.1 | 18.3 | 20.9 | 14.1 | 16.3 | 18.8 | 15.1 |
Non-alcohol consumption | 15,107 | 8.4 | 8.8 | 4.5 | 9.5 | 10.2 | 6.9 | 9.6 | 10.3 | 6.8 |
Yes alcohol consumption | 7436 | 18.3 | 21.9 | 19.5 | 22.5 | 24.9 | 10.9 | 20.7 | 24.3 | 17.3 |
Variables Women | n | % | % | Difference (%) | % | % | Difference (%) | % | % | Difference (%) |
<30 years | 2833 | 1.6 | 1.6 | 2.9 | 1.5 | 1.5 | 3.1 | 0.9 | 0.9 | 1.9 |
30–39 years | 4824 | 3.1 | 3.3 | 4.9 | 2.9 | 3.1 | 5.1 | 1.6 | 1.7 | 5.1 |
40–49 years | 4636 | 7.5 | 8.2 | 8.8 | 5.9 | 6.4 | 9.0 | 2.8 | 3.0 | 9.0 |
50–59 years | 2768 | 15.9 | 17.9 | 12.6 | 10.6 | 11.9 | 12.5 | 5.1 | 5.7 | 11.8 |
Social class I | 1973 | 5.5 | 5.9 | 6.8 | 4.2 | 4.4 | 4.7 | 1.7 | 1.8 | 4.4 |
Social class II | 4920 | 7.6 | 8.2 | 8.5 | 5.7 | 6.1 | 7.9 | 2.7 | 2.9 | 6.9 |
Social class III | 8168 | 14.2 | 15.8 | 11.2 | 9.9 | 11.2 | 13.1 | 5.2 | 5.8 | 12.0 |
Elementary school | 7289 | 13.4 | 14.9 | 11.0 | 9.6 | 10.8 | 12.8 | 5.1 | 5.7 | 11.8 |
High school | 6056 | 8.4 | 9.1 | 8.7 | 6.2 | 6.7 | 8.1 | 2.9 | 3.1 | 7.1 |
University | 1716 | 5.8 | 6.2 | 6.9 | 4.3 | 4.5 | 4.8 | 1.8 | 1.9 | 4.5 |
Non-smokers | 10,236 | 7.5 | 7.9 | 5.5 | 5.5 | 5.8 | 6.0 | 2.5 | 2.6 | 5.5 |
Smokers | 4825 | 10.7 | 11.8 | 10.2 | 8.6 | 9.5 | 10.9 | 4.4 | 4.8 | 9.9 |
Yes physical activity | 7317 | 3.0 | 3.1 | 3.1 | 2.3 | 2.4 | 2.9 | 1.1 | 1.1 | 1.9 |
Non-physical activity | 7744 | 14.2 | 16.2 | 14 | 12.9 | 14.5 | 12.5 | 5.9 | 6.5 | 10.8 |
Yes Mediterranean diet | 7029 | 3.8 | 3.9 | 3.9 | 2.8 | 2.9 | 3.5 | 1.6 | 1.6 | 2.5 |
Non-Mediterranean diet | 8032 | 13.1 | 14.8 | 13.1 | 11.7 | 13.0 | 11.0 | 5.3 | 5.8 | 9.1 |
Non-alcohol consumption | 12,750 | 6.2 | 6.5 | 5.0 | 4.6 | 4.8 | 5.0 | 2.0 | 2.1 | 4.8 |
Yes alcohol consumption | 2311 | 12.0 | 13.3 | 10.9 | 8.3 | 9.2 | 10.5 | 4.9 | 5.4 | 10.9 |
4. Discussion
5. Strengths
- Large sample size: With over 139,000 participants and a longitudinal subsample exceeding 40,000, the study offers high statistical power and subgroup granularity.
- Occupational population: Inclusion of actively employed individuals facilitates development of pragmatic, workplace-based health promotion policies.
- Integrated phenotyping: Simultaneous assessment of MetS using both ATP III and IDF criteria, along with HTGW, enhances diagnostic robustness.
- Comprehensive variable set: Inclusion of sociodemographic, clinical, lifestyle, and dietary data enables multidimensional analyses.
- Temporal perspective: The 10-year retrospective follow-up provides insight into trends and trajectories of metabolic risk.
- Validated instruments: The use of validated tools (e.g., MEDAS and IPAQ) ensures reliable assessment of key behavioral variables in both cross-sectional and longitudinal contexts.
6. Limitations
- Healthy worker effect: Restricting the sample to actively employed individuals likely underestimates the true burden of metabolic disorders in the general population [43].
- Cross-sectional design: Limits causal inference and raises concerns about reverse causality (e.g., metabolic conditions leading to poor lifestyle choices). While longitudinal data were included, the retrospective design and lack of intermediate time points limit causal modeling.
- Self-reported lifestyle data: Despite validated instruments, responses may be influenced by recall or social desirability biases, particularly in a working adult population [44].
- Omission of psychosocial variables: Important factors such as stress, sleep patterns, and chronotype were not assessed, although they are increasingly recognized as relevant to metabolic risk [45].
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J.-P.; et al. A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strauss, M.; Lavie, C.J.; Lippi, G.; Brzęk, A.; Vollenberg, R.; Sanchis-Gomar, F.; Leischik, R. A systematic review of prevalence of metabolic syndrome in occupational groups-Does occupation matter in the global epidemic of metabolic syndrome? Prog. Cardiovasc. Dis. 2022, 75, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrilero, N.; García-Altés, A.; Mendicuti, V.M.; García, B.R. Do governments care about socioeconomic inequalities in health? Narrative review of reports of EU-15 countries. Eur. Policy Anal. 2021, 7, 521–536. [Google Scholar] [CrossRef]
- Fontán-Vela, J.; Ortiz, C.; López-Cuadrado, T.; Téllez-Plaza, M.; García-Esquinas, E.; Galán, I. Alcohol consumption patterns and adherence to the Mediterranean diet in the adult population of Spain. Eur. J. Nutr. 2024, 63, 881–891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Moodie, R.; Bennett, E.; Kwong, E.J.L.; Santos, T.M.; Pratiwi, L.; Williams, J.; Baker, P. Ultra-Processed Profits: The Political Economy of Countering the Global Spread of Ultra-Processed Foods-A Synthesis Review on the Market and Political Practices of Transnational Food Corporations and Strategic Public Health Responses. Int. J. Health Policy Manag. 2021, 10, 968–982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Zhang, H.; Yang, L.; Shao, J.; Chen, D.; Cui, N.; Tang, L.; Fu, Y.; Xue, E.; Lai, C.; et al. Sedentary time and the risk of metabolic syndrome: A systematic review and dose-response meta-analysis. Obes. Rev. 2022, 23, e13510. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Tueros, M.; Ramirez-Peña, J.; Cabanillas-Lazo, M.; Paz-Ibarra, J.L.; Pinedo-Torres, I. Effects of aerobic exercise on components of the metabolic syndrome in older adults with type 2 diabetes mellitus: Systematic review and meta-analysis. Rev. Peru. Med. Exp. Salud Publica 2024, 41, 146–155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miñambres, I.; Sánchez-Hernández, J.; Cuixart, G.; Sánchez-Pinto, A.; Sarroca, J.; Pérez, A. Characterization of the hypertriglyceridemic waist phenotype in patients with type2 diabetes mellitus in Spain: An epidemiological study. Rev. Clin. Esp. 2020, 221, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Tárraga Marcos, P.J.; López-González, Á.A.; Rifá, E.M.-A.; Oliveira, H.P.; Sánchez, C.M.; López, P.J.T.; Ramírez-Manent, J.I. The Prevalence of Metabolic Syndrome and Hypertriglyceridemic Waist Based on Sociodemographic Variables and Healthy Habits in Healthcare Workers: A Retrospective Study. Life 2025, 15, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sastre-Alzamora, T.; Tomás-Gil, P.; Paublini, H.; Pallarés, L.; Ramírez-Manent, J.I.; López-González, A.A. Relationship between heart age and insulin resistance risk scales in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 16–22. [Google Scholar] [CrossRef]
- Langlois, M.R. The Friedewald formula strikes back. Clin. Chem. Lab. Med. 2025, 63, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Jover, A.M.; Ángel, A.; González, L.; Gil, P.T.; Coll, J.L.; Lliteras, P.M.; Ignacio, J.; Manent, R.; López-González, A.A. Hide Association between different cardiometabolic risk scales and metabolic syndrome scales in 418.343 Spanish workers. Acad. J. Health Sci. 2023, 38, 152–157. [Google Scholar] [CrossRef]
- Lu, N.; Cheng, G.; Ma, C.-M.; Liu, X.-L. Hypertriglyceridemic waist phenotype, hypertriglyceridemic waist-to-height ratio phenotype and abnormal glucose metabolism in adolescents. Diabetes Res. Clin. Pract. 2023, 198, 110622. [Google Scholar] [CrossRef] [PubMed]
- Juanola, M.C.A.; López-González, Á.A.; Tomás-Gil, P.; Paublini, H.; López, P.J.T.; Ramírez-Manent, J.I. Influence of tobacco consumption and other variables on the values of different cardiovascular risk factors in 418,343 spanish workers. Acad. J. Health Sci. 2024, 39, 89–95. [Google Scholar] [CrossRef]
- Ahmad, S.; Moorthy, M.V.; Lee, I.M.; Ridker, P.M.; Manson, J.E.; Buring, J.E.; Demler, O.V.; Mora, S. Mediterranean Diet Adherence and Risk of All-Cause Mortality in Women. JAMA Netw. Open. 2024, 7, e2414322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- de Hevia, J.O.; López-González, Á.A.; Ramírez-Manent, J.I.; Oliveira, H.P.; López, P.J.T.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; de Determinantes Sociales de la Sociedad Española de Epidemiología, G. Propuestas de clase social neoweberiana y neomarxista a partir de la Clasificación Nacional de Ocupaciones. Gac. Sanit. 2013, 27, 263–272. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Basaran, E.; Aktas, G. Waist-to-height ratio as a novel marker of metabolic syndrome in patients with type 2 diabetes mellitus. Explor. Endocr. Metab. Dis. 2025, 2, 101421. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, X.; Wu, H. Inflammatory Links Between Hypertriglyceridemia and Atherogenesis. Curr. Atheroscler Rep. 2022, 24, 297–306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nsabimana, P.; Sombié, O.O.; Pauwels, N.S.; Boynito, W.G.; Tariku, E.Z.; Vasanthakaalam, H.; De Henauw, S.; Abbeddou, S. Association between urbanization and metabolic syndrome in low- and middle-income countries: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, D.; Luben, R.; Hayat, S.; Talarico, R.; Allen, N.E.; Kuźma, E.; Littlejohns, T.J. Role of age and exposure duration in the association between metabolic syndrome and risk of incident dementia: A prospective cohort study. Lancet Healthy Longev. 2024, 5, 100652. [Google Scholar] [CrossRef] [PubMed]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendaño, M.; McCrory, C.; d’Errico, A.; Bochud, M.; Barros, H.; Costa, G.; Chadeau-Hyam, M.; et al. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: Multi-cohort population based study. BMJ. 2018, 360, k1046. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leone, A.; De Amicis, R.; Battezzati, A.; Bertoli, S. Adherence to the Mediterranean Diet and Risk of Metabolically Unhealthy Obesity in Women: A Cross-Sectional Study. Front. Nutr. 2022, 9, 858206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, L.; Pearce, M.; Abbas, A.; Mok, A.; Strain, T.; Ali, S.; Crippa, A.; Dempsey, P.C.; Golubic, R.; Kelly, P.; et al. Non-occupational physical activity and risk of cardiovascular disease, cancer and mortality outcomes: A dose-response meta-analysis of large prospective studies. Br. J. Sports Med. 2023, 57, 979–989. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cubas-Basterrechea, G.; Elío, I.; Alonso, G.; Otero, L.; Gutiérrez-Bardeci, L.; Puente, J.; Muñoz-Cacho, P. Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients 2022, 14, 4536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381, Erratum in Lancet Neurol. 2024, 23, e11. https://doi.org/10.1016/S1474-4422(24)00231-X. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Feng, J.; Chen, L.; Huang, J.; Zhang, P.; Chen, C.; Lu, L.; Tang, C. Acupoint stimulation for alcohol use disorder: A systematic review and meta-analysis. Medicine 2023, 102, e32614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, Y.-M.; Ma, N.; Jia, X.-J.; Lu, Q. The “hyper-triglyceridemic waist phenotype” is a reliable marker for prediction of accumulation of abdominal visceral fat in Chinese adults. Eat. Weight. Disord. 2020, 25, 719–726. [Google Scholar] [CrossRef] [PubMed]
- de Cuevillas, B.; Alvarez-Alvarez, I.; Riezu-Boj, J.I.; Navas-Carretero, S.; Martinez, J.A. The hypertriglyceridemic-waist phenotype as a valuable and integrative mirror of metabolic syndrome traits. Sci. Rep. 2021, 11, 21859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guallar-Castillón, P.; Pérez, R.F.; López García, E.; León-Muñoz, L.M.; Aguilera, M.T.; Graciani, A.; Gutiérrez-Fisac, J.L.; Banegas, J.R.; Rodríguez-Artalejo, F. Magnitude and management of metabolic syndrome in Spain in 2008-2010: The ENRICA study. Rev. Esp. Cardiol. (Engl. Ed.) 2014, 67, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balkau, B.; Charles, M.A.; Drivsholm, T.; Borch-Johnsen, K.; Wareham, N.; Yudkin, J.S.; Morris, R.; Zavaroni, I.; van Dam, R.; Feskins, E.; et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002, 28, 364–376. [Google Scholar] [PubMed]
- Corbi-Cobo-Losey, M.J.; Martinez-Gonzalez, M.Á.; Gribble, A.K.; Fernandez-Montero, A.; Navarro, A.M.; Domínguez, L.J.; Bes-Rastrollo, M.; Toledo, E. Coffee Consumption and the Risk of Metabolic Syndrome in the ‘Seguimiento Universidad de Navarra’ Project. Antioxidants 2023, 12, 686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lan, L.; Lang, X.; McKee, M.; Tse, L.A.; Rangarajan, S.; Qiang, D.; Liu, Z.; Wang, B.; Liu, Z.; Yan, M.; et al. Association of sitting time with cardiovascular events among manual and non-manual workers: A prospective cohort study (PURE-China). BMC Public Health 2025, 25, 750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karagöz, A.; Onat, A.; Aydın, M.; Can, G.; Şimşek, B.; Yüksel, M. Distinction of hypertriglyceridemic waist phenotype from simple abdominal obesity: Interaction with sex hormone-binding globulin levels to confer high coronary risk. Postgrad Med. 2017, 129, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Möhner, M. An approach to adjust standardized mortality ratios for competing cause of death in cohort studies. Int. Arch. Occup. Environ. Health 2016, 89, 593–598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, J.; Zhu, X.; Yuan, D.; Ji, D.; Guo, H.; Li, Y.; He, Z.; Bai, H.; Zhu, Q.; Shen, C.; et al. Association of sleep duration and sleep quality with the risk of metabolic syndrome in adults: A systematic review and meta-analysis. Endokrynol. Pol. 2022, 73, 968–987. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Busquets-Cortés, C.; Tárraga López, P.J.; Riutord-Sbert, P. Cross-Sectional and Longitudinal Assessment of Sociodemographic and Lifestyle Determinants of Metabolic Syndrome and Hypertriglyceridemic Waist Phenotypes in 139,634 Spanish Workers. Metabolites 2025, 15, 474. https://doi.org/10.3390/metabo15070474
Obrador de Hevia J, López-González ÁA, Ramírez-Manent JI, Busquets-Cortés C, Tárraga López PJ, Riutord-Sbert P. Cross-Sectional and Longitudinal Assessment of Sociodemographic and Lifestyle Determinants of Metabolic Syndrome and Hypertriglyceridemic Waist Phenotypes in 139,634 Spanish Workers. Metabolites. 2025; 15(7):474. https://doi.org/10.3390/metabo15070474
Chicago/Turabian StyleObrador de Hevia, Joan, Ángel Arturo López-González, José Ignacio Ramírez-Manent, Carla Busquets-Cortés, Pedro Juan Tárraga López, and Pere Riutord-Sbert. 2025. "Cross-Sectional and Longitudinal Assessment of Sociodemographic and Lifestyle Determinants of Metabolic Syndrome and Hypertriglyceridemic Waist Phenotypes in 139,634 Spanish Workers" Metabolites 15, no. 7: 474. https://doi.org/10.3390/metabo15070474
APA StyleObrador de Hevia, J., López-González, Á. A., Ramírez-Manent, J. I., Busquets-Cortés, C., Tárraga López, P. J., & Riutord-Sbert, P. (2025). Cross-Sectional and Longitudinal Assessment of Sociodemographic and Lifestyle Determinants of Metabolic Syndrome and Hypertriglyceridemic Waist Phenotypes in 139,634 Spanish Workers. Metabolites, 15(7), 474. https://doi.org/10.3390/metabo15070474