Effects of Eight Weeks of Aerobic Training Combined with Carbohydrate Mouth Rinse on Body Composition and Exercise Performance in Adult Men with Obesity: Evidence from Korea
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design and Procedures
2.3. Interventions
2.3.1. Aerobic Exercise Program
2.3.2. Carbohydrate Mouth Rinse Treatment
2.4. Measurements
2.4.1. Body Composition
2.4.2. RMR
2.4.3. VO2max
2.4.4. Exercise Performance
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Changes in Body Composition and Resting Metabolic Rate
3.3. Changes in Exercise Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Lindhard, J. The relative value of fat and carbohydrate as sources of muscular energy: With appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem. J. 1920, 14, 290. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Patrizio, F.; Felici, F.; Nicolò, A.; Sacchetti, M. Carbohydrate mouth rinsing: Improved neuromuscular performance during isokinetic fatiguing exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 44 (Suppl. S1), 25–33. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Stevenson, E.J.; Rollo, I.; Russell, M. The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J. Sci. Med. Sport 2017, 20, 1123–1129. [Google Scholar] [CrossRef]
- American College of Sports Medicine. Foods & Fluids for Fitness Athletes; American College of Sports Medicine: Indianapolis, IN, USA, 2012. [Google Scholar]
- Pottier, A.; Bouckaert, J.; Gilis, W.; Roels, T.; Derave, W. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand. J. Med. Sci. Sports 2010, 20, 105–111. [Google Scholar] [CrossRef]
- Vieira, A.F.; Costa, R.R.; Macedo, R.C.O.; Coconcelli, L.; Kruel, L.F.M. Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: A systematic review and meta-analysis. Br. J. Nutr. 2016, 116, 1153–1164. [Google Scholar] [CrossRef]
- Hearris, M.A.; Hammond, K.M.; Fell, J.M.; Morton, J.P. Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients 2018, 10, 298. [Google Scholar] [CrossRef]
- Slater, T.; Mode, W.J.; Bonnard, L.C.; Sweeney, C.; Funnell, M.P.; Smith, H.A.; Hough, J.; James, R.M.; Varley, I.; Sale, C.; et al. Substituting carbohydrate at lunch for added protein increases fat oxidation during subsequent exercise in healthy males. J. Clin. Endocrinol. Metab. 2025, 110, e728–e740. [Google Scholar] [CrossRef]
- Carter, J.M.; Jeukendrup, A.E.; Jones, D.A. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med. Sci. Sports Exerc. 2004, 36, 2107–2111. [Google Scholar] [CrossRef]
- de Ataide e Silva, T.; Di Cavalcanti Alves de Souza, M.E.; de Amorim, J.F.; Stathis, C.G.; Leandro, C.G.; Lima-Silva, A.E. Can carbohydrate mouth rinse improve performance during exercise? A systematic review. Nutrients 2013, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Oral carbohydrate rinse: Placebo or beneficial? Curr. Sports Med. Rep. 2013, 12, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Bridge, M.W.; Jones, D. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009, 587, 1779–1794. [Google Scholar] [CrossRef]
- Rollo, I.A.N.; Cole, M.; Miller, R.; Williams, C. Influence of mouth rinsing a carbohydrate solution on 1-h running performance. Med. Sci. Sports Exerc. 2010, 42, 798–804. [Google Scholar] [CrossRef]
- Frank, G.K.; Oberndorfer, T.A.; Simmons, A.N.; Paulus, M.P.; Fudge, J.L.; Yang, T.T.; Kaye, W.H. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage 2008, 39, 1559–1569. [Google Scholar] [CrossRef]
- Painelli, V.D.S.; Nicastro, H.; Lancha, A.H. Carbohydrate mouth rinse: Does it improve endurance exercise performance? Nutr. J. 2010, 9, 33. [Google Scholar] [CrossRef]
- De Oliveira, E.P.; Burini, R.C. Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients 2014, 6, 4191–4199. [Google Scholar] [CrossRef]
- Fares, E.J.; Kayser, B. Carbohydrate mouth rinse effects on exercise capacity in pre- and postprandial states. J. Nutr. Metab. 2011, 2011, 385962. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.C.; Bird, S.R.; Burke, L.M.; Hawley, J.A. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl. Physiol. Nutr. Metab. 2013, 38, 134–139. [Google Scholar] [CrossRef]
- Devenney, S.; Collins, K.; Shortall, M. Effects of various concentrations of carbohydrate mouth rinse on cycling performance in a fed state. Eur. J. Sport Sci. 2016, 16, 1073–1078. [Google Scholar] [CrossRef]
- Johnstone, A.M.; Murison, S.D.; Duncan, J.S.; Rance, K.A.; Speakman, J.R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 2005, 82, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Selman, C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003, 62, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J.; Turner, N.; Storlien, L.H.; Else, P.L. Dietary fats and membrane function: Implications for metabolism and disease. Biol. Rev. 2005, 80, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Poehlman, E.T.; Melby, C.L.; Badylak, S.F. Relation of age and physical exercise status on metabolic rate in younger and older healthy men. J. Gerontol. 1991, 46, B54–B58. [Google Scholar] [CrossRef] [PubMed]
- Alghannam, A.F.; Ghaith, M.M.; Alhussain, M.H. Regulation of energy substrate metabolism in endurance exercise. Int. J. Environ. Res. Public Health 2021, 18, 4963. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Yu, J.I.; Seo, T.B.; Kim, Y.P. Effects of the music tempo during walking exercise on heart rate variation, lactic acid, and aerobic variables in male college students. J. Exerc. Rehabil. 2024, 20, 220–226. [Google Scholar] [CrossRef]
- Shi, H.; Sim, Y.J. Effects of weekend-focused exercise on obesity-related hormones and metabolic syndrome markers in male high school students. J. Exerc. Rehabil. 2024, 20, 227–234. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Brietzke, C.; Franco-Alvarenga, P.E.; Coelho-Junior, H.J.; Silveira, R.; Asano, R.Y.; Pires, F.O. Effects of carbohydrate mouth rinse on cycling time trial performance: A systematic review and meta-analysis. Sports Med. 2019, 49, 57–66. [Google Scholar] [CrossRef]
- Painelli, V.D.S.; Brietzke, C.; Franco-Alvarenga, P.E.; Canestri, R.; Vinícius, Í.; Pires, F.O. A narrative review of current concerns and future perspectives of the carbohydrate mouth rinse effects on exercise performance. SAGE Open Med. 2022, 10, 20503121221098120. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.E.; Byblow, W.D.; Stinear, C.M.; Gant, N. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite 2014, 80, 212–219. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Group | p | |
---|---|---|---|
CMR (n = 10) | PMR (n = 10) | ||
Age (years) | 27.80 ± 2.25 | 29.90 ± 3.07 | 0.100 |
Height (cm) | 172.60 ± 3.57 | 175.02 ± 3.87 | 0.163 |
Weight (kg) | 89.93 ± 8.25 | 91.60 ± 4.65 | 0.584 |
Body fat (%) | 33.86 ± 2.85 | 34.62 ± 2.83 | 0.557 |
Lean body mass (kg) | 36.27 ± 2.00 | 35.84 ± 1.87 | 0.625 |
BMI (kg/m2) | 30.16 ± 2.18 | 29.92 ± 1.64 | 0.790 |
VO2max (mL/kg/min) | 33.42 ± 2.23 | 34.02 ± 1.76 | 0.512 |
Variable | CMR (n = 10) | Within Group | PMR (n = 10) | Within Group | Between Group | Group × Time | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | CV | Post | CV | p | Pre | CV | Post | CV | p | p (Pre/Post) | F | p | |
Weight (kg) | 89.93 ± 8.25 | 0.09 | 81.81 ± 5.59 | 0.07 | <0.001 *** | 91.60 ± 4.65 | 0.05 | 86.10 ± 3.83 | 0.04 | 0.015 * | 0.501 0.046 * | 3.74 | 0.069 |
Body fat percentage (%) | 33.86 ± 2.85 | 0.08 | 27.68 ± 2.30 | 0.08 | <0.001 *** | 34.62 ± 2.83 | 0.08 | 30.96 ± 2.25 | 0.07 | <0.001 *** | 0.537 0.038 * | 12.25 | 0.003 ** |
Lean body mass (kg) | 36.27 ± 2.00 | 0.06 | 37.05 ± 1.65 | 0.04 | 0.116 | 35.84 ± 1.87 | 0.05 | 35.28 ± 2.45 | 0.07 | 0.320 | 0.583 0.093 | 8.13 | 0.011 * |
RMR (kcal/day) | 1689.67 ± 81.14 | 0.05 | 1743.35 ± 95.51 | 0.06 | 0.002 ** | 1698.56 ± 63.22 | 0.04 | 1722.96 ± 63.21 | 0.04 | 0.008 ** | 0.774 0.446 | 11.64 | 0.003 ** |
Variable | CMR (n = 10) | Within Group | PMR (n = 10) | Within Group | Between Group | Group × Time | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | CV | Post | CV | p | Pre | CV | Post | CV | p | p (Pre/Post) | F | p | |
RPE | 16.30 ± 0.95 | 0.06 | 14.00 ± 1.76 | 0.13 | <0.001 *** | 16.50 ± 1.08 | 0.07 | 15.10 ± 1.20 | 0.08 | 0.002 ** | 0.655 0.046 * | 2.00 | 0.175 |
VO2max (mL/kg/min) | 33.42 ± 2.23 | 0.07 | 38.65 ± 1.91 | 0.05 | <0.001 *** | 34.02 ± 1.76 | 0.05 | 37.32 ± 1.03 | 0.03 | <0.001 *** | 0.443 0.093 | 10.13 | 0.005 ** |
Exercise distance (km) | 4.13 ± 0.31 | 0.08 | 7.01 ± 0.32 | 0.05 | <0.001 *** | 3.88 ± 0.52 | 0.13 | 5.07 ± 0.80 | 0.16 | <0.001 *** | 0.285 <0.001 *** | 30.86 | <0.001 *** |
Exercise speed (km/h) | 6.40 ± 0.55 | 0.09 | 8.19 ± 0.70 | 0.09 | <0.001 *** | 6.55 ± 0.39 | 0.06 | 7.24 ± 0.32 | 0.04 | <0.001 *** | 0.589 0.002 * | 30.44 | <0.001 *** |
Exercise time (min) | 33.35 ± 2.88 | 0.09 | 43.39 ± 3.02 | 0.07 | <0.001 *** | 32.91 ± 3.80 | 0.12 | 38.05 ± 4.05 | 0.11 | <0.001 *** | 0.767 0.015 * | 8.56 | 0.009 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.-M.; So, W.-Y.; Park, S.-E. Effects of Eight Weeks of Aerobic Training Combined with Carbohydrate Mouth Rinse on Body Composition and Exercise Performance in Adult Men with Obesity: Evidence from Korea. Metabolites 2025, 15, 455. https://doi.org/10.3390/metabo15070455
Ko J-M, So W-Y, Park S-E. Effects of Eight Weeks of Aerobic Training Combined with Carbohydrate Mouth Rinse on Body Composition and Exercise Performance in Adult Men with Obesity: Evidence from Korea. Metabolites. 2025; 15(7):455. https://doi.org/10.3390/metabo15070455
Chicago/Turabian StyleKo, Jae-Myun, Wi-Young So, and Sung-Eun Park. 2025. "Effects of Eight Weeks of Aerobic Training Combined with Carbohydrate Mouth Rinse on Body Composition and Exercise Performance in Adult Men with Obesity: Evidence from Korea" Metabolites 15, no. 7: 455. https://doi.org/10.3390/metabo15070455
APA StyleKo, J.-M., So, W.-Y., & Park, S.-E. (2025). Effects of Eight Weeks of Aerobic Training Combined with Carbohydrate Mouth Rinse on Body Composition and Exercise Performance in Adult Men with Obesity: Evidence from Korea. Metabolites, 15(7), 455. https://doi.org/10.3390/metabo15070455