Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health
Abstract
:1. Introduction
2. Methods and Material
3. Results and Discussion
3.1. Classification of IEMs
3.1.1. Disorders of Intoxication
3.1.2. Disorders of Energy Metabolism
3.1.3. Disorders of Complex Molecule Metabolism
3.2. Endocrinology in IEM
3.2.1. Endocrine Disruptions in IEMs
3.2.2. Hormonal Modulation During Puberty in IEM Patients
3.3. Molecular Intersections in IEMs and Dietary Management
3.3.1. Amino Acid Disorders and Insulin Signaling Pathways
PKU
MSUD
PA and MMA
3.3.2. Beta-Oxidation Defects
Hormone | Normal Molecular Mechanisms and Metabolic Effects | Impact on IEM Patients |
---|---|---|
Growth Hormone (GH) |
|
|
Insulin-Like Growth Factor-1 (IGF-1) |
|
|
Follicle-Stimulating Hormone (FSH) |
|
|
Luteinizing Hormone (LH) |
|
|
Estrogen |
|
|
Testosterone |
|
|
IEM Disorder | Affected Metabolic Pathway | Pubertal Hormone Interaction | Clinical Implications |
---|---|---|---|
Phenylketonuria (PKU) |
|
|
|
Maple Syrup Urine Disease (MSUD) |
|
|
|
3.4. Summary of Key Findings
3.5. Implications for Drug Discovery and Clinical Trials
- Hormone-targeted therapies are agents that modulate GH or sex steroids and could theoretically stabilize insulin sensitivity during puberty but require careful oversight to avoid adversely impacting growth or sexual maturation.
- GLP-1 receptor agonists are already employed in pediatric obesity, and drugs like exenatide or liraglutide (used off-label in certain contexts) show insulin-sensitizing and anti-inflammatory potential [9,59]. Small-scale studies in fatty acid oxidation or amino acid disorders may help define whether these can mitigate pubertal metabolic instability.
- Sirtuin modulators and gene therapy regulate mitochondrial function, oxidative stress, and insulin signaling [56]. Given that many IEMs involve mitochondrial deficits or chronic inflammation, sirtuin agonists or gene-based interventions could be promising, but robust protocols accounting for pubertal hormone dynamics.
- Genetic modulation and treatment with mRNA substrates are quickly developing new strategies in the treatment of IEM disorders.
3.6. Future Directions
- Longitudinal metabolic profiling: Prospective studies tracking adolescents through puberty to adulthood can clarify whether insulin resistance remits post-puberty or remains pathologically elevated in specific IEM cohorts.
- Personalized dietary interventions: The interplay between high-carbohydrate regimens, fasting avoidance, and growth demands requires nuanced protocols, particularly during growth spurts.
- Endocrine-targeted therapies: Understanding how subtle subclinical endocrine deficiencies (e.g., mild hypogonadism and suboptimal glucagon responses) influence long-term metabolic health may identify new intervention points.
3.7. Additional Considerations: Age-Specific Interventions, Transition, and Collaboration
3.8. Age-Related Nutritional Guidance
- Early adolescence (10–13 years): Rapid linear growth and fluctuating insulin sensitivity often necessitate slightly higher protein allocations or more frequent meals/snacks, depending on the underlying IEM. A modest protein increase can be considered in conditions like MSUD, balancing growth needs against the risk of elevated BCAAs.
- Mid-adolescence (14–16 years): Peak hormonal activity (particularly GH) can amplify lipolysis and insulin antagonism, warranting careful monitoring of blood glucose or ketone levels in fatty acid oxidation defects.
- Late adolescence (17–19 years): Insulin sensitivity may partially improve, but new social factors, such as sports participation and irregular sleep, may disrupt established feeding schedules. Flexible, nutrient-dense snack strategies can help prevent metabolic crises.
3.9. Transition into Adult Care
- Many metabolic clinics transfer patients to adult services by 18–21 years of age. This handoff can jeopardize continuity if adult metabolic specialists have limited exposure to pediatric-onset conditions. Promoting a structured transition, where adolescents gradually take on responsibility for their nutritional management, helps maintain metabolic control beyond puberty [10,26].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IEM | Inborn Errors of Metabolism |
MetS | Metabolic Syndrome |
BMI | Body Mass Index |
GH | Growth Hormone |
IGF1 | Insulin-like growth factor 1 |
FSH | Follicle Stimulating Hormone |
LH | Luteinizing Hormone |
ACTH | Adrenocorticotropic Hormone |
T2DM | Type 2 Diabetes Mellitus |
PKU | Phenylketonuria |
MSUD | Maple Syrup Urine Disease |
PA | Propionic Acidemia |
MMA | Methylmalonic Acidemia |
BCKD | Branched-Chain Ketoacid Dehydrogenase |
BCAA | Branched-chain amino acids |
TCA-cycle | Tricarboxylic Acid Cycle |
MCAD | Medium-Chain Acyl-CoA Dehydrogenase deficiency |
VLCAD | Very Long-ChainAcyl-CoA Dehydrogenase deficiency |
LCHAD | Long-Chain 3-hydroxyacyl-CoA Dehydrogenase deficiency |
CPT1 | Carnitine Palmityoltransferase 1 |
CPT2 | Carnitine Palmityoltransferase 2 |
CACT | Carnitine-Acylcarnitine Translocase |
GSD | Glycogen Storage Diseases |
CDG | Congenital Disorders of Glycosylation |
NEFA | Non-Esterified Fatty Acids |
POI | Premature Ovarian Insufficiency |
HRT | Hormone Replacement Therapy |
ARS2 | Aminoacyl-tRNA syntethase 2 deficiency |
LSD | Lysosomal Storage Disease |
PP | Precocious Puberty |
ROS | Reactive Oxygen Species |
IRS | Insulin Receptor Substrates |
mTORC1 | MechanisticTarget of Rapamycin complex 1 |
JNK | c-Jun N-Terminal Kinase |
MAPK | p38 Mitogen-Activated Protein Kinase |
References
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. ICIMD Advisory Group. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164–177. [Google Scholar] [PubMed]
- Vernon, H.J. Inborn Errors of Metabolism: Advances in Diagnosis and Therapy. JAMA Pediatr. 2015, 169, 778–782. [Google Scholar] [PubMed]
- Zhang, H.; Ma, J.; Tang, K.; Huang, B. Beyond energy storage: Roles of glycogen metabolism in health and disease. FEBS J. 2021, 288, 3772–3783. [Google Scholar]
- Saudubray, J.M.; Garcia-Cazorla, À. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr. Clin. N. Am. 2018, 65, 179–208. [Google Scholar]
- Waters, D.; Adeloye, D.; Woolham, D.; Wastnedge, E.; Patel, S.; Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: A systematic analysis of the evidence. J. Glob. Health 2018, 8, 021102. [Google Scholar]
- Goetzman, E.S.; Gong, Z.; Schiff, M.; Wang, Y.; Muzumdar, R.H. Metabolic pathways at the crossroads of diabetes and inborn errors. J. Inherit. Metab. Dis. 2018, 41, 5–17. [Google Scholar]
- Pandey, M.K.; Grabowski, G.A. Immunological cells and functions in Gaucher disease. Crit. Rev. Oncog. 2013, 18, 197–220. [Google Scholar]
- Parkinson-Lawrence, E.J.; Shandala, T.; Prodoehl, M.; Plew, R.; Borlace, G.N.; Brooks, D.A. Lysosomal Storage Disease: Revealing Lysosomal Function and Physiology. Physiology 2010, 25, 102–115. [Google Scholar]
- Stenlid, R.; Cerenius, S.Y.; Manell, H.; Küçükemre Aydin, B.; Mörwald, K.; Gomahr, J.; Höghammar Mitkas, M.; Eriksson, I.; Ciba, I.; Geiersberger, S.; et al. Screening for inflammatory markers identifies IL18-Rα as a potential link between exenatide and its anti-inflammatory effect. New results from the Combat-JUDO randomized controlled trial. Ann. Nutr. Metab. 2023, 79, 522–527. [Google Scholar]
- Marcus, C.; Danielsson, P.; Hagman, E. Pediatric obesity-Long-term consequences and effect of weight loss. J. Intern. Med. 2022, 292, 870–891. [Google Scholar]
- Olsson, D.; Barbaro, M.; Haglind, C.; Halldin, M.; Lajic, S.; Tucci, S.; Zetterström, R.H.; Nordenström, A. Very long-chain acyl-CoA dehydrogenase deficiency in a Swedish cohort: Clinical symptoms, newborn screening, enzyme activity, and genetics. JIMD Rep. 2022, 63, 181–190. [Google Scholar] [PubMed]
- la Marca, G.; Carling, R.S.; Moat, S.J.; Yahyaoui, R.; Ranieri, E.; Bonham, J.R.; Schielen, P.C. Current State and Innovations in Newborn Screening: Continuing to Do Good and Avoid Harm. Int. J. Neonatal Screen 2023, 9, 15. [Google Scholar]
- Langeveld, M.; Hollak, C.E.M. Bone health in patients with inborn errors of metabolism. Rev. Endocr. Metab. Disord. 2018, 19, 81–92. [Google Scholar] [PubMed]
- Kauli, R.; Zaizov, R.; Lazar, L.; Pertzelan, A.H.; Laron, Z.; Galatzer, A.; Phillip, M.; Yaniv, Y.; Cohen, I.J. Delayed growth and puberty in patients with Gaucher disease type 1: Natural history and effect of splenectomy and/or enzyme replacement therapy. Isr. Med. Assoc. J. 2000, 2, 158–163. [Google Scholar]
- Vazquez, M.J.; Velasco, I.; Tena-Sempere, M. Novel Mechanisms for the Metabolic Control of Puberty: Implications for Pubertal Alterations in Early Onset Obesity and Malnutrition. 1 August 2019. Available online: https://joe.bioscientifica.com/view/journals/joe/242/2/JOE-19-0223.xml (accessed on 27 December 2024).
- Williams, R.A.; Mamotte, C.D.; Burnett, J.R. Phenylketonuria: An Inborn Error of Phenylalanine Metabolism. Clin. Biochem. Rev. 2008, 29, 31–41. [Google Scholar]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Stenlid, R.; Olsson, D.; Cen, J.; Manell, H.; Haglind, C.; Chowdhury, A.I.; Bergsten, P.; Nordenström, A.; Halldin, M. Altered mitochondrial metabolism in peripheral blood cells from patients with inborn errors of β-oxidation. Clin. Transl. Sci. 2022, 15, 182–194. [Google Scholar]
- Nsiah-Sefaa, A.; McKenzie, M. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci. Rep. 2016, 36, e00313. [Google Scholar]
- Platt, F.M. Emptying the stores: Lysosomal diseases and therapeutic strategies. Nat. Rev. Drug Discov. 2018, 17, 133–150. [Google Scholar]
- Vantyghem, M.C.; Dobbelaere, D.; Mention, K.; Wemeau, J.L.; Saudubray, J.M.; Douillard, C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J. Rare Dis. 2012, 7, 11. [Google Scholar]
- Stenlid, R.; Manell, H.; Seth, R.; Cerenius, S.Y.; Chowdhury, A.; Roa Cortés, C.; Nyqvist, I.; Lundqvist, T.; Halldin, M.; Bergsten, P. Low Fasting Concentrations of Glucagon in Patients with Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Metabolites 2023, 13, 780. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Ilgaz, F.; Evans, S.; van Dam, E.; Rocha, J.C.; Karabulut, E.; Hickson, M.; Daly, A.; MacDonald, A. Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3506. [Google Scholar] [CrossRef] [PubMed]
- Leal-Witt, M.J.; Rojas-Agurto, E.; Muñoz-González, M.; Peñaloza, F.; Arias, C.; Fuenzalida, K.; Bunout, D.; Cornejo, V.; Acevedo, A. Risk of Developing Insulin Resistance in Adult Subjects with Phenylketonuria: Machine Learning Model Reveals an Association with Phenylalanine Concentrations in Dried Blood Spots. Metabolites 2023, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Piomboni, P.; Governini, L.; Gori, M.; Puggioni, E.; Costantino-Ceccarini, E.; Luddi, A. New Players in the Infertility of a Mouse Model of Lysosomal Storage Disease: The Hypothalamus-Pituitary-Gonadal Axis. Front. Endocrinol. 2014, 4, 204. [Google Scholar] [CrossRef]
- Dimou, A.; Tsimihodimos, V.; Bairaktari, E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int. J. Mol. Sci. 2022, 23, 4022. [Google Scholar] [CrossRef]
- Kelsey, M.M.; Zeitler, P.S. Insulin Resistance of Puberty. Curr. Diabetes Rep. 2016, 16, 64. [Google Scholar] [CrossRef]
- Nakamura, K.; Kido, J.; Matsumoto, S.; Mitsubuchi, H.; Endo, F. Clinical manifestations and growth of patients with urea cycle disorders in Japan. J. Hum. Genet. 2016, 61, 613–616. [Google Scholar] [CrossRef]
- Barros, R.P.A.; Gustafsson, J.Å. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef]
- Manell, H.; Staaf, J.; Manukyan, L.; Kristinsson, H.; Cen, J.; Stenlid, R.; Ciba, I.; Forslund, A.; Bergsten, P. Altered Plasma Levels of Glucagon, GLP-1 and Glicentin During OGTT in Adolescents With Obesity and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1181–1189. [Google Scholar] [CrossRef]
- Stenlid, R.; Manell, H.; Halldin, M.; Kullberg, J.; Ahlström, H.; Manukyan, L.; Weghuber, D.; Paulmichl, K.; Zsoldos, F.; Bergsten, P.; et al. High DPP-4 Concentrations in Adolescents Are Associated with Low Intact GLP-1. J. Clin. Endocrinol. Metab. 2018, 103, 2958–2966. [Google Scholar] [CrossRef]
- Derks, T.G.; Reijngoud, D.J.; Waterham, H.R.; Gerver, W.J.M.; Van Den Berg, M.P.; Sauer, P.J.; Smit, G.P.A. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: Clinical presentation and outcome. J. Pediatr. 2006, 148, 665–670. [Google Scholar] [PubMed]
- Haglind, C.B.; Stenlid, M.H.; Ask, S.; Alm, J.; Nemeth, A.; Döbeln, U.; Nordenström, A. Growth in Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency. JIMD Rep. -Case Res. Rep. 2013, 8, 81–90. [Google Scholar]
- Barta, A.G.; Becsei, D.; Kiss, E.; Sumánszki, C.; Simonová, E.; Reismann, P. The Impact of Phenylketonuria on Body Composition in Adults. Ann. Nutr. Metab. 2022, 78, 98–105. [Google Scholar] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar]
- Aydin, B.K.; Stenlid, R.; Ciba, I.; Cerenius, S.Y.; Dahlbom, M.; Bergsten, P.; Nergårdh, R.; Forslund, A. High levels of FSH before puberty are associated with increased risk of metabolic syndrome during pubertal transition. Pediatr. Obes. 2022, 17, e12906. [Google Scholar] [CrossRef]
- Thakur, M.; Feldman, G.; Puscheck, E.E. Primary ovarian insufficiency in classic galactosemia: Current understanding and future research opportunities. J. Assist. Reprod. Genet. 2018, 35, 3–16. [Google Scholar] [CrossRef]
- Frederick, A.B.; Zinsli, A.M.; Carlock, G.; Conneely, K.; Fridovich-Keil, J.L. Presentation, progression, and predictors of ovarian insufficiency in classic galactosemia. J. Inherit. Metab. Dis. 2018, 41, 785–790. [Google Scholar] [CrossRef]
- Fuchs, S.A.; Schene, I.F.; Kok, G.; Jansen, J.M.; Nikkels, P.G.; van Gassen, K.L.; Terheggen-Lagro, S.W.; van der Crabben, S.N.; Hoeks, S.E.; Niers, L.E.; et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet. Med. 2019, 21, 319–330. [Google Scholar]
- Tsai, M.J.M.; Chen, M.H.; Chien, Y.H.; Tung, Y.C. Precocious puberty in patients with Pompe disease. Front. Endocrinol. 2023, 14, 1150498. [Google Scholar] [CrossRef]
- Concolino, D.; Muzzi, G.; Pisaturo, L.; Piccirillo, A.; Di Natale, P.; Strisciuglio, P. Precocious puberty in Sanfilippo IIIA disease: Diagnosis and follow-up of two new cases. Eur. J. Med. Genet. 2008, 51, 466–471. [Google Scholar]
- Couce, M.L.; Sánchez-Pintos, P.; Vitoria, I.; De Castro, M.J.; Aldámiz-Echevarría, L.; Correcher, P.; Fernández-Marmiesse, A.; Roca, I.; Hermida, A.; Martínez-Olmos, M.; et al. Carbohydrate status in patients with phenylketonuria. Orphanet J. Rare Dis. 2018, 13, 103. [Google Scholar]
- Tousoulis, D.; Papageorgiou, N.; Androulakis, E.; Siasos, G.; Latsios, G.; Tentolouris, K.; Stefanadis, C. Diabetes mellitus-associated vascular impairment: Novel circulating biomarkers and therapeutic approaches. J. Am. Coll. Cardiol. 2013, 62, 667–676. [Google Scholar] [PubMed]
- Sena, B.D.S.; Andrade, M.I.S.D.; Silva, A.P.F.D.; Dourado, K.F.; Silva, A.L.F. Overweight and associated factors in children and adolescents with phenylketonuria: A systematic review. Rev. Paul. De Pediatr. 2020, 38, e2018201. [Google Scholar]
- Silveira, A.M.; Lima, P.L.; Alves, M.R.A.; Soares, R.D.L.; Kanufre, V.D.C.; Rodrigues, V.D.M.; Starling, A.L.P.; Norton, R.D.C.; Aguiar, M.J.B.D. Overweight/obesity in adolescents with phenylketonuria: Protective and predisposing factors. J. De Pediatr. 2022, 98, 104–110. [Google Scholar]
- Camatta, G.C.; de Cássia Kanufre, V.; Alves, M.R.A.; Soares, R.D.L.; de Carvalho Norton, R.; de Aguiar, M.J.B.; Starling, A.L.P. Body fat percentage in adolescents with phenylketonuria and associated factors. Mol. Genet. Metab. Rep. 2020, 23, 100595. [Google Scholar]
- Aguirre, G.A.; De Ita, J.R.; de la Garza, R.G.; Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016, 14, 3. [Google Scholar] [CrossRef]
- McGraw Hill Medical. Disorders of Propionate and Methylmalonate Metabolism. Available online: https://ommbid.mhmedical.com/content.aspx?bookId=2709§ionId=225086103 (accessed on 4 November 2024).
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar]
- Adams, S.H.; Hoppel, C.L.; Lok, K.H.; Zhao, L.; Wong, S.W.; Minkler, P.E.; Hwang, D.H.; Newman, J.W.; Garvey, W.T. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African American women. J. Nutr. 2009, 139, 1073–1081. [Google Scholar]
- Anderson, S.G.; Dunn, W.B.; Banerjee, M.; Brown, M.; Broadhurst, D.I.; Goodacre, R.; Cooper, G.J.S.; Kell, D.B.; Cruickshank, J.K. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS ONE 2014, 9, e103217. [Google Scholar]
- Savage, D.B.; Petersen, K.F.; Shulman, G.I. Disordered Lipid Metabolism and the Pathogenesis of Insulin Resistance. Physiol. Rev. 2007, 87, 507–520. [Google Scholar]
- Staaf, J.; Ubhayasekera, S.J.; Sargsyan, E.; Chowdhury, A.; Kristinsson, H.; Manell, H.; Bergquist, J.; Forslund, A.; Bergsten, P. Initial hyperinsulinemia and subsequent β-cell dysfunction is associated with elevated palmitate levels. Pediatr. Res. 2016, 80, 267–274. [Google Scholar] [PubMed]
- McCoin, C.S.; Knotts, T.A.; Adams, S.H. Acylcarnitines—Old actors auditioning for new roles in metabolic physiology. Nat. Rev. Endocrinol. 2015, 11, 617–625. [Google Scholar] [PubMed]
- Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009, 84, 705–712. [Google Scholar]
- Wang, C.H.; Wei, Y.H. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 5266. [Google Scholar] [CrossRef]
- Hallows, W.C.; Lee, S.; Denu, J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 2006, 103, 10230–10235. [Google Scholar]
- Hübinger, A.; Weikert, G.; Wolf, H.P.O.; Gries, F.A. The effect of etomoxir on insulin sensitivity in type 2 diabetic patients. Horm. Metab. Res. 1992, 24, 115–118. [Google Scholar]
- Stenlid, R.; Cerenius, S.Y.; Wen, Q.; Aydin, B.K.; Manell, H.; Chowdhury, A.; Kristinsson, H.; Ciba, I.; Gjessing, E.S.; Mörwald, K.; et al. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front. Endocrinol. 2023, 14, 1293093. [Google Scholar]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S. Once-Weekly Semaglutide in Adolescents with Obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar]
Category | Characteristics | Examples of Disorders |
---|---|---|
Disorders of Intoxication | Toxic metabolite accumulation caused by defects in catabolic pathways. Often triggered by dietary intake or physiological stress. | Phenylketonuria (PKU), maple syrup urine disease (MSUD), propionic acidemia (PA), methylmalonic acidemia (MMA) |
Disorders of Energy Metabolism | Impaired ATP production, storage, or utilization. May involve mitochondrial β-oxidation, oxidative phosphorylation, or glycogen breakdown. | Medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency, very long-chain Acyl-CoA dehydrogenase (VLCAD) deficiency |
Disorders of Complex Molecules | Abnormalities in synthesis, degradation, or storage of macromolecules affecting multiple organ systems (e.g., lysosomal or peroxisomal defects). | Gaucher disease, other lysosomal storage disorders (LSDs), glycogen storage diseases (GSDs) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundqvist, T.; Stenlid, R.; Halldin, M. Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health. Metabolites 2025, 15, 235. https://doi.org/10.3390/metabo15040235
Lundqvist T, Stenlid R, Halldin M. Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health. Metabolites. 2025; 15(4):235. https://doi.org/10.3390/metabo15040235
Chicago/Turabian StyleLundqvist, Thomas, Rasmus Stenlid, and Maria Halldin. 2025. "Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health" Metabolites 15, no. 4: 235. https://doi.org/10.3390/metabo15040235
APA StyleLundqvist, T., Stenlid, R., & Halldin, M. (2025). Hormonal Crossroads in Inborn Errors of the Metabolism Impact of Puberty and Dietary Interventions on Metabolic Health. Metabolites, 15(4), 235. https://doi.org/10.3390/metabo15040235