Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors
Abstract
1. Introduction
2. Energetic Metabolism Biomarkers
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | [22,61] [34] | |
| Flight/muscle activity | thoracic muscle | [62] | |
| hemolymph | [63] | ||
| Food deprivation | hemolymph | [64] | |
| E-field at frequency 50 Hz | hemolymph | [65] | |
| Deformed wing virus infection | hemolymph | [66] | |
| Nosema spp. | hemolymph | [6] [67] | |
| Varroa destructor | hemolymph | [68] | |
| CBD extract | hemolymph | [34] | |
| Neonicotinoid pesticides | hemolymph | [69] | |
| Exposure to common tansy extract (a natural substitute for synthetic pesticides) | hemolymph | [70] | |
| Fungicide (active ingredients: boscalid and pyraclostrobin) | hemolymph | [71] | |
| Formamidine amitraz | hemolymph | [72] | |
| Treatment with bromfenvinphos | hemolymph | [73] | |
| Treatment with amphotericin-B | hemolymph | [17] | |
| Consumed curcumin | hemolymph | [35] | |
| Various monofloral and polyfloral diets | hemolymph | [22,74] | |
| fat body | [22] |
3. Total Protein as a Biomarker
4. Enzymatic Biomarkers
5. Antioxidant Biomarkers
6. Lipid Metabolic Biomarkers
7. Conclusions and Further Research Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tautz, J. The Buzz about Bees: Biology of a Superorganism; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Strachecka, A.; Łoś, A.; Filipczuk, J.; Schulz, M. Individual and Social Immune Mechanisms of the Honey Bee (Apis mellifera). Med. Weter. 2018, 74, 426–433. [Google Scholar] [CrossRef]
- De Souza, D.A.; Kaftanoglu, O.; De Jong, D.; Page, R.E.; Amdam, G.V.; Wang, Y. Differences in the Morphology, Physiology and Gene Expression of Honey Bee Queens and Workers Reared in Vitro versus in Situ. Biol. Open 2018, 7, bio036616. [Google Scholar] [CrossRef]
- Strachecka, A.; Chobotow, J.; Kuszewska, K.; Olszewski, K.; Skowronek, P.; Bryś, M.; Paleolog, J.; Woyciechowski, M. Morphology of Nasonov and Tergal Glands in Apis mellifera Rebels. Insects 2022, 13, 401. [Google Scholar] [CrossRef]
- Morfin, N.; Foster, L.J.; Guzman-Novoa, E.; Van Westendorp, P.; Currie, R.W.; Higo, H. Varroa Destructor Economic Injury Levels and Pathogens Associated with Colony Losses in Western Canada. Front. Bee Sci. 2024, 2, 1355401. [Google Scholar] [CrossRef]
- Mayack, C.; Naug, D. Parasitic Infection Leads to Decline in Hemolymph Sugar Levels in Honeybee Foragers. J. Insect Physiol. 2010, 56, 1572–1575. [Google Scholar] [CrossRef]
- Marche, M.G.; Satta, A.; Floris, I.; Lazzeri, A.M.; Ruiu, L. Inhibition of Paenibacillus Larvae by an Extracellular Protein Fraction from a Honeybee-Borne Brevibacillus laterosporus Strain. Microbiol. Res. 2019, 227, 126303. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, Z.; Fan, X.; Wang, Z.; Wang, S.; Guo, S.; Gao, X.; Zhao, H.; Jing, X.; Zou, P.; et al. Effect of Ascosphaera Apis Infestation on the Activities of Four Antioxidant Enzymes in Asian Honey Bee Larval Guts. Antioxidants 2023, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Alshukri, B.M.; Talib Al-Esawy, M. Reduced Deformed Wing Virus of Apis mellifera L. Nurses by High Fat Diets under Laboratory Conditions. J. Plant Prot. Res. 2021, 61, 57–62. [Google Scholar] [CrossRef]
- Crenna, E.; Jolliet, O.; Collina, E.; Sala, S.; Fantke, P. Characterizing Honey Bee Exposure and Effects from Pesticides for Chemical Prioritization and Life Cycle Assessment. Environ. Int. 2020, 138, 105642. [Google Scholar] [CrossRef]
- Hisamoto, S.; Ikegami, M.; Goka, K.; Sakamoto, Y. The Impact of Landscape Structure on Pesticide Exposure to Honey Bees. Nat. Commun. 2024, 15, 8999. [Google Scholar] [CrossRef]
- Omelchun, Y.A.; Shevchenko, L.V.; Nikitina, L.M.; Solomon, V.V.; Mykhalska, V.M.; Furman, S.V.; Lisohurska, D.V.; Lisohurska, O.V. Pesticides as a Cause of Honeybee (Apis mellifera) Mortality and Their Persistence in Honey. Biosyst. Divers. 2025, 33, e2501. [Google Scholar] [CrossRef]
- Kaila, L.; Ketola, J.; Toivonen, M.; Loukola, O.; Hakala, K.; Raiskio, S.; Hurme, T.; Jalli, M. Pesticide Residues in Honeybee-Collected Pollen: Does the EU Regulation Protect Honeybees from Pesticides? Environ. Sci. Pollut. Res. 2022, 29, 18225–18244. [Google Scholar] [CrossRef]
- Barascou, L.; Sene, D.; Le Conte, Y.; Alaux, C. Pesticide Risk Assessment: Honeybee Workers Are Not All Equal Regarding the Risk Posed by Exposure to Pesticides. Environ. Sci. Pollut. Res. 2022, 29, 90328–90337. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Siuda, M.; Bąk, B.; Wójcik, Ł.; Strachecka, A. Imidacloprid Markedly Affects Hemolymph Proteolysis, Biomarkers, DNA Global Methylation, and the Cuticle Proteolytic Layer in Western Honeybees. Apidologie 2020, 51, 620–630. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Gancarz, M.; Wiącek, D.; Nawrocka, A.; Strachecka, A. Imidacloprid Pesticide Causes Unexpectedly Severe Bioelement Deficiencies and Imbalance in Honey Bees Even at Sublethal Doses. Animals 2023, 13, 615. [Google Scholar] [CrossRef]
- Bajda, M.; Łoś, A.; Merska, M. Effect of Amphotericin B on the Biochemical markers in the Haemolymph of Honey Bees. Med. Weter. 2014, 70, 766–769. [Google Scholar]
- Chęć, M.; Olszewski, K.; Dziechciarz, P.; Skowronek, P.; Pietrow, M.; Borsuk, G.; Bednarczyk, M.; Jasina, G.; Jasina, J.; Gagoś, M. Effect of Stearin and Paraffin Adulteration of Beeswax on Brood Survival. Apidologie 2021, 52, 432–446. [Google Scholar] [CrossRef]
- Strachecka, A.; Staniszewska, P.; Olszewski, K.; Chęć, M.; Gagoś, M.; Dziechciarz, P.; Bryś, M.S.; Paleolog, J. The Antioxidant System Was Unexpectedly Strongly Suppressed in Apis mellifera Worker Bees Emerged from Larvae Reared on Combs Adulterated with Paraffin or Stearin. Sci. Rep. 2025, 15, 3965–3970. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, K.; DeGrandi-Hoffman, G.; Pruett, M.; Jones, V.P.; Corby-Harris, V.; Pireaud, J.; Curry, R.; Hopkins, B.; Northfield, T.D. Warmer Autumns and Winters Could Reduce Honey Bee Overwintering Survival with Potential Risks for Pollination Services. Sci. Rep. 2024, 14, 5410. [Google Scholar] [CrossRef] [PubMed]
- vanEngelsdorp, D.; Meixner, M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef] [PubMed]
- Bryś, M.S.; Staniec, B.; Strachecka, A. The Effect of Pollen Monodiets on Fat Body Morphology Parameters and Energy Substrate Levels in the Fat Body and Hemolymph of Apis mellifera L. Workers. Sci. Rep. 2024, 14, 15177. [Google Scholar] [CrossRef] [PubMed]
- Bryś, M.S.; Strachecka, A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology—A Review. Molecules 2024, 29, 2605. [Google Scholar] [CrossRef]
- Botías, C.; David, A.; Horwood, J.; Abdul-Sada, A.; Nicholls, E.; Hill, E.; Goulson, D. Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees. Environ. Sci. Technol. 2015, 49, 12731–12740. [Google Scholar] [CrossRef]
- Minaud, É.; Rebaudo, F.; Davidson, P.; Hatjina, F.; Hotho, A.; Mainardi, G.; Steffan-Dewenter, I.; Vardakas, P.; Verrier, E.; Requier, F. How Stressors Disrupt Honey Bee Biological Traits and Overwintering Mechanisms. Heliyon 2024, 10, e34390. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Ahmed, H.R.; Abd El-Wahed, A.A.; Saeed, A.; Algethami, A.F.; Attia, N.F.; Guo, Z.; Musharraf, S.G.; Khatib, A.; Alsharif, S.M.; et al. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet. Sci. 2022, 9, 199. [Google Scholar] [CrossRef]
- Kunat-Budzyńska, M.; Staniszewska, P.; Olszewski, K.; Strachecka, A. Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera). Antioxidants 2025, 14, 373. [Google Scholar] [CrossRef] [PubMed]
- Kunat-Budzyńska, M.; Staniszewska, P.; Olszewski, K.; Cytryńska, M.; Strachecka, A. The Efficiency of the Krebs Cycle and the Respiratory Chain in Physiologically and Prematurely Aging Bees (Apis mellifera). Int. J. Mol. Sci. 2025, 26, 7294. [Google Scholar] [CrossRef] [PubMed]
- Kohno, H.; Kubo, T. Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. Insects 2019, 10, 348. [Google Scholar] [CrossRef]
- Łoś, A.; Bieńkowska, M.; Strachecka, A. Honey Bee (Apis mellifera) as an Alternative Model Invertebrate Organism. Med. Weter. 2019, 75, 93–106. [Google Scholar]
- Strimbu, K.; Tavel, J.A. What Are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Badiou-Bénéteau, A.; Carvalho, S.M.; Brunet, J.L.; Carvalho, G.A.; Buleté, A.; Giroud, B.; Belzunces, L.P. Development of Biomarkers of Exposure to Xenobiotics in the Honey Bee Apis mellifera: Application to the Systemic Insecticide Thiamethoxam. Ecotoxicol. Environ. Saf. 2012, 82, 22–31. [Google Scholar] [CrossRef]
- Skowronek, P.; Strachecka, A. Cannabidiol (CBD) Supports the Honeybee Worker Organism by Activating the Antioxidant System. Antioxidants 2023, 12, 279. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. CBD Supplementation Has a Positive Effect on the Activity of the Proteolytic System and Biochemical Markers of Honey Bees (Apis mellifera) in the Apiary. Animals 2022, 12, 2313. [Google Scholar] [CrossRef]
- Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin Stimulates Biochemical Mechanisms of Apis mellifera Resistance and Extends the Apian Life-Span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar] [CrossRef]
- Strachecka, A.; Krauze, M.; Olszewski, K.; Borsuk, G.; Paleolog, J.; Merska, M.; Chobotow, J.; Bajda, M.; Grzywnowicz, K. Unexpectedly Strong Effect of Caffeine on the Vitality of Western Honeybees (Apis mellifera). Biochemistry 2014, 79, 1192–1201. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Gancarz, M.; Strachecka, A. Imidacloprid Decreases Energy Production in the Hemolymph and Fat Body of Western Honeybees Even Though, in Sublethal Doses, It Increased the Values of Six of the Nine Compounds in the Respiratory and Citric Cycle. PLoS ONE 2025, 20, e0320168. [Google Scholar] [CrossRef]
- Badiou-Bénéteau, A.; Benneveau, A.; Géret, F.; Delatte, H.; Becker, N.; Brunet, J.L.; Reynaud, B.; Belzunces, L.P. Honeybee Biomarkers as Promising Tools to Monitor Environmental Quality. Environ. Int. 2013, 60, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Nicewicz, Ł.; Nicewicz, A.W.; Nakonieczny, M. Vitellogenins Level as a Biomarker of the Honeybee Colony Strength in Urban and Rural Conditions. Insects 2025, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Grzywnowicz, K.; Ciołek, A.; Tabor, A.; Jaszek, M. Profiles of the Body-Surface Proteolytic System of Honey Bee Queens, Workers and Drones: Ontogenetic and Seasonal Changes in Proteases and Their Natural Inhibitors. Apidologie 2009, 40, 4–19. [Google Scholar] [CrossRef]
- Gliński, Z.; Buczek, K.; Marć, M. Zjawiska i Mechanizmy Odporności Przeciwzakaźnej Pszczoły Miodnej—Nowe Osiągnięcia. Życie Weter. 2011, 86, 687–694. [Google Scholar]
- Strachecka, A.; Demetraki-Paleolog, J. System Proteolityczny Powierzchni Ciała Apis w Zachowaniu Zdrowotności Rodzin Pszczelich. Kosmos 2011, 60, 43–51. [Google Scholar]
- Larsen, A.; Reynaldi, F.J.; Guzmán-Novoa, E. Fundaments of the Honey Bee (Apis mellifera) Immune System. Review. Rev. Mex. Cienc. Pecu. 2019, 10, 705–728. [Google Scholar] [CrossRef]
- Strachecka, A.; Migdał, P.; Kuszewska, K.; Skowronek, P.; Grabowski, M.; Paleolog, J.; Woyciechowski, M. Humoral and Cellular Defense Mechanisms in Rebel Workers of Apis mellifera. Biology 2021, 10, 1146. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Zhang, W.; Wang, H.; Liu, Z.; Xu, B. Alterations in Protein and Amino Acid Metabolism in Honeybees (Apis mellifera) Fed Different L-Leucine Diets during the Larval Stage. J. Asia Pac. Entomol. 2016, 19, 769–774. [Google Scholar] [CrossRef]
- Strachecka, A.; Kuszewska, K.; Olszewski, K.; Skowronek, P.; Grzybek, M.; Grabowski, M.; Paleolog, J.; Woyciechowski, M. Activities of Antioxidant and Proteolytic Systems and Biomarkers in the Fat Body and Hemolymph of Young Apis mellifera Females. Animals 2022, 12, 1121. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Fathy, N.A.M.; Labib, M.; El-Baz, A.F.; El-Sheikh, A.A.; Moustafa, A.H. Biological Control of Nosemosis in Apis mellifera L. with Acacia Nilotica Extract. Sci. Rep. 2024, 14, 28340. [Google Scholar] [CrossRef]
- Jovanovic, N.M.; Glavinic, U.; Ristanic, M.; Vejnovic, B.; Ilic, T.; Stevanovic, J.; Stanimirovic, Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees (Apis mellifera) Infected with Nosema Ceranae. Animals 2023, 13, 3543. [Google Scholar] [CrossRef] [PubMed]
- Yazlovytska, L.S.; Karavan, V.V.; Domaciuk, M.; Panchuk, I.I.; Borsuk, G.; Volkov, R.A. Increased Survival of Honey Bees Consuming Pollen and Beebread Is Associated with Elevated Biomarkers of Oxidative Stress. Front. Ecol. Evol. 2023, 11, 1098350. [Google Scholar] [CrossRef]
- Kramer, B.H.; Nehring, V.; Buttstedt, A.; Heinze, J.; Korb, J.; Libbrecht, R.; Meusemann, K.; Paxton, R.J.; Séguret, A.; Schaub, F.; et al. Oxidative Stress and Senescence in Social Insects: A Significant but Inconsistent Link? Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20190732. [Google Scholar] [CrossRef]
- Spremo, J.; Purać, J.; Čelić, T.; Đorđievski, S.; Pihler, I.; Kojić, D.; Vukašinović, E. Assessment of Oxidative Status, Detoxification Capacity and Immune Responsiveness in Honey Bees with Ageing. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2024, 298, 111735. [Google Scholar] [CrossRef] [PubMed]
- Pudasaini, R.; Dhital, B.; Chaudhary, S. Nutritional Requirement and Its Role on Honeybee: A Review. J. Agric. Nat. Resour. 2020, 3, 321–334. [Google Scholar] [CrossRef]
- Najarpoor, A.; Mohamadzade Namin, S.; Ghosh, S.; Jung, C. Impact of Carbohydrate Sources on the Longevity and Physiological Traits of the European Honey Bee Workers. Sci. Rep. 2025, 15, 29532. [Google Scholar] [CrossRef] [PubMed]
- Paray, B.A.; Kumari, I.; Hajam, Y.A.; Sharma, B.; Kumar, R.; Albeshr, M.F.; Farah, M.A.; Khan, J.M. Honeybee Nutrition and Pollen Substitutes: A Review. Saudi J. Biol. Sci. 2021, 28, 1167–1176. [Google Scholar] [CrossRef]
- Barker, R.J.; Lehner, Y. Free amino acids in thoraces of flown honey bees, Apis mellifera L. (Hymenoptera: Apidae). Comp. Biochem. Physiol. 1972, 43B, 163–169. [Google Scholar] [CrossRef]
- Severson, D.W.; Erickson, E.H. Honey Bee (Hymenoptera: Apidae) Colony Performance in Relation to Supplemental Carbohydrates. J. Econ. Entomol. 1984, 77, 1473–1478. [Google Scholar] [CrossRef]
- Arslan, A.; Standifer, L.N.; Don, H. Carbohydrates in honey bee hemolymph. Comp. Biochem. Physiol. Part B Comp. Biochem. 1986, 84, 363–367. [Google Scholar] [CrossRef]
- Blatt, J.; Roces, F. Haemolymph Sugar Levels in Foraging Honeybees (Apis mellifera carnica): Dependence on Metabolic Rate and In Vivo Measurement of Maximal Rates of Trehalose Synthesis. J. Exp. Biol. 2001, 204, 2709–2716. [Google Scholar] [CrossRef]
- Quinlan, G.; Döke, M.A.; Ortiz-Alvarado, Y.; Rodriguez-Gomez, N.; Koru, Y.B.; Underwood, R. Carbohydrate Nutrition Associated with Health of Overwintering Honey Bees. J. Insect Sci. 2023, 23, 16. [Google Scholar] [CrossRef]
- López-Uribe, M.M.; Ricigliano, V.A.; Simone-Finstrom, M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu. Rev. Anim. Biosci. 2020, 8, 269–294. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.M. Caste-specific changes in honeybee flight capacity. Physiol. Zoöl. 1986, 59, 175–187. [Google Scholar] [CrossRef]
- Suarez, R.K.; Darveau, C.A.; Welch, K.C.; O’Brien, D.M.; Roubik, D.W.; Hochachka, P.W. Energy Metabolism in Orchid Bee Flight Muscles: Carbohydrate Fuels All. J. Exp. Biol. 2005, 208, 3573–3579. [Google Scholar] [CrossRef] [PubMed]
- Gmeinbauer, R.; Crailsheim, K. Glucose Utilization during Flight of Honeybee (Apis mellifera) Workers, Drones and Queens. J. Insect Physiol. 1993, 39, 959–967. [Google Scholar] [CrossRef]
- Woodring, J.; Boulden, M.; Das, A.; Gade, G. Studies on Blood Sugar Homeostasis in the Honeybee (Apis mellifera L.). J. Insect. Physiol. 1992, 39, 89–97. [Google Scholar] [CrossRef]
- Migdał, P.; Murawska, A.; Bieńkowski, P.; Strachecka, A.; Roman, A. Effect of E-Field at Frequency 50 Hz on Protein, Glucose, and Triglycerides Concentration in Honeybee Hemolymph. Eur. Zool. J. 2021, 88, 1170–1176. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, Y.C.; Lu, Y.H.; Chen, S.J.; Lin, Y.H.; Tseng, Y.K.; Lin, Y.T.; Wu, Y.L.; Huang, R.N. Synergistic Impacts of Propargite Exposure and Deformed Wing Virus Infection on the Health of Western Honey Bees. Ecotoxicol. Environ. Saf. 2025, 289, 117430. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. Insects 2020, 11, 638. [Google Scholar] [CrossRef]
- Yang, X.; Cox-Foster, D.L. Impact of an ectoparasite on the Immunity and Pathology of an Invertebrate: Evidence for Host Immunosuppression and Viral Amplification. Proc. Natl. Acad. Sci. USA 2005, 102, 7470–7475. [Google Scholar] [CrossRef]
- Tosi, S.; Burgio, G.; Nieh, J.C. A Common Neonicotinoid Pesticide, Thiamethoxam, Impairs Honey Bee Flight Ability. Sci. Rep. 2017, 7, 1201. [Google Scholar] [CrossRef]
- Białecka, N.; Garbacz, K.; Berbeć, E.; Murawska, A.; Madras-Majewska, B.; Migdał, P. Changes in Selected Biochemical Markers of Honey Bees Exposed to Fermented Common Tansy Solution (Tanacetum vulgare L.). Animals 2024, 14, 2857. [Google Scholar] [CrossRef]
- DesJardins, N.S.; Smith, B.H.; Harrison, J.F. A Mitotoxic Fungicide Alters Post-Ingestive Glucose Signals Necessary for Associative Learning in Honey Bees. J. Insect Physiol. 2023, 149, 104554. [Google Scholar] [CrossRef]
- Cascino, P.; Nectoux, M.; Guiraud, G.; Bounias, M. The Formamidine Amitraz as a Hyperglycemic Alpha-Agonist in Worker Honeybees (Apis mellifera mellifera L.) In Vivo. Biomed. Environ. Sci. 1989, 2, 106–114. [Google Scholar]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Varroa Treatment with Bromfenvinphos Markedly Suppresses Honeybee Biochemical Defence Levels. Entomol. Exp. Appl. 2016, 160, 57–71. [Google Scholar] [CrossRef]
- El Mohandes, S.S.; Nafea, E.A.; Fawzy, A.M. Effect of Different Feeding Diets on the Haemolymph of the Newly Emerged Worker Apis mellifera L. Egypt. Acad. J. Biol. Sci. A 2010, 3, 213–220. [Google Scholar] [CrossRef]
- Somerville, D.C.; Nicol, H.I. Crude Protein and Amino Acid Composition of Honey Bee-Collected Pollen Pellets from South-East Australia and a Note on Laboratory Disparity. Aust. J. Exp. Agric. 2006, 46, 141–149. [Google Scholar] [CrossRef]
- Frias, B.E.D.; Barbosa, C.D.; Lourenço, A.P. Pollen Nutrition in Honey Bees (Apis mellifera): Impact on Adult Health. Apidologie 2016, 47, 15–25. [Google Scholar] [CrossRef]
- Tsuruda, J.M.; Chakrabarti, P.; Sagili, R.R. Honey Bee Nutrition. Vet. Clin. N. Am.-Food Anim. Pract. 2021, 37, 505–519. [Google Scholar] [CrossRef]
- De Jong, D.; Da Silva, E.J.; Kevan, P.G.; Atkinson, J.L. Pollen Substitutes Increase Honey Bee Haemolymph Protein Levels as Much as or More than Does Pollen. J. Apic. Res. 2009, 48, 34–37. [Google Scholar] [CrossRef]
- Chang, H.; Ding, G.; Jia, G.; Feng, M.; Huang, J. Hemolymph Metabolism Analysis of Honey Bee. Insects 2023, 14, 37. [Google Scholar] [CrossRef]
- Degrandi-Hoffman, G.; Corby-Harris, V.; Carroll, M.; Toth, A.L.; Gage, S.; Dejong, E.W.; Graham, H.; Chambers, M.; Meador, C.; Obernesser, B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.). Insects 2021, 12, 235. [Google Scholar] [CrossRef]
- Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological Stoichiometry of the Honeybee: Pollen Diversity and Adequate Species Composition Are Needed to Mitigate Limitations Imposed on the Growth and Development of Bees by Pollen Quality. PLOS ONE 2017, 12, e0183236. [Google Scholar] [CrossRef] [PubMed]
- DeGrandi-Hoffman, G.; Corby-Harris, V.; Chen, Y.; Graham, H.; Chambers, M.; Watkins deJong, E.; Ziolkowski, N.; Kang, Y.; Gage, S.; Deeter, M.; et al. Can Supplementary Pollen Feeding Reduce Varroa Mite and Virus Levels and Improve Honey Bee Colony Survival? Exp. Appl. Acarol. 2020, 82, 455–473. [Google Scholar] [CrossRef]
- Jack, C.J.; Uppala, S.S.; Lucas, H.M.; Sagili, R.R. Effects of Pollen Dilution on Infection of Nosema Ceranae in Honey Bees. J. Insect Physiol. 2016, 87, 12–19. [Google Scholar] [CrossRef]
- Amdam, G.V.; Norberg, K.; Omholt, S.W.; Kryger, P.; Lourenço, A.P.; Bitondi, M.M.G.; Simões, Z.L.P. Higher Vitellogenin Concentrations in Honey Bee Workers May Be an Adaptation to Life in Temperate Climates. Insectes Sociaux 2005, 52, 316–319. [Google Scholar] [CrossRef]
- Cabbri, R.; Ferlizza, E.; Nanetti, A.; Monari, E.; Andreani, G.; Galuppi, R.; Isani, G. Biomarkers of Nutritional Status in Honeybee Haemolymph: Effects of Different Biotechnical Approaches for Varroa Destructor Treatment and Wintering Phase. Apidologie 2018, 49, 606–618. [Google Scholar] [CrossRef]
- Martins, J.R.; Nunes, F.M.; Cristino, A.S.; Simões, Z.L.; Bitondi, M.M. The Four Hexamerin Genes in the Honey Bee: Structure, Molecular Evolution and Function Deduced from Expression Patterns in Queens, Workers and Drones. BMC Mol. Biol. 2010, 11, 23. [Google Scholar] [CrossRef]
- Feng, M.; Ramadan, H.; Han, B.; Fang, Y.; Li, J. Hemolymph Proteome Changes during Worker Brood Development Match the Biological Divergences between Western Honey Bees (Apis mellifera) and Eastern Honey Bees (Apis Cerana). BMC Genom. 2014, 15, 563. [Google Scholar] [CrossRef]
- Erban, T.; Harant, K.; Kamler, M.; Markovic, M.; Titera, D. Detailed Proteome Mapping of Newly Emerged Honeybee Worker Hemolymph and Comparison with the Red-Eye Pupal Stage. Apidologie 2016, 47, 805–817. [Google Scholar] [CrossRef]
- Geiser, D.L.; Winzerling, J.J. Insect Transferrins: Multifunctional Proteins. Biochim. Biophys. Acta Gen. Subj. 2012, 1820, 437–451. [Google Scholar] [CrossRef]
- Zheng, A.; Li, J.; Begna, D.; Fang, Y.; Feng, M.; Song, F. Proteomic Analysis of Honeybee (Apis mellifera L.) Pupae Head Development. PLoS ONE 2011, 6, e20428. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Crailsheim, K. The Protein Balance of the Honey Bee Worker. Apidologie 1990, 21, 417–429. [Google Scholar] [CrossRef]
- Isani, G.; Bellei, E.; Rudelli, C.; Cabbri, R.; Ferlizza, E.; Andreani, G. SDS-PAGE-Based Quantitative Assay of Hemolymph Proteins in Honeybees: Progress and Prospects for Field Application. Int. J. Mol. Sci. 2023, 24, 10216. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Fat Body—Multifunctional Insect Tissue. Insects 2021, 12, 547. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Chobotow, J.; Wójcik, Ł.; Paleolog, J.; Woyciechowski, M. Segmentation of the Subcuticular Fat Body in Apis mellifera Females with Different Reproductive Potentials. Sci. Rep. 2021, 11, 13887. [Google Scholar] [CrossRef]
- Paes-de-Oliveira, V.T.; Poiani, S.B.; Antonialli, W.F.; da Cruz-Landim, C. Morphometric Changes on Honeybee Apis mellifera L. Workers Fat Body Cells after Juvenile Hormone Topic Application at Emergence. Micron 2008, 39, 426–430. [Google Scholar] [CrossRef] [PubMed]
- DeGrandi-Hoffman, G.; Gage, S.L.; Corby-Harris, V.; Carroll, M.; Chambers, M.; Graham, H.; Watkins deJong, E.; Hidalgo, G.; Calle, S.; Azzouz-Olden, F.; et al. Connecting the Nutrient Composition of Seasonal Pollens with Changing Nutritional Needs of Honey Bee (Apis mellifera L.) Colonies. J. Insect Physiol. 2018, 109, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Bíliková, K.; Hanes, J.; Nordhoff, E.; Saenger, W.; Klaudiny, J.; Šimúth, J. Apisimin, a New Serine-Valine-Rich Peptide from Honeybee (Apis mellifera L.) Royal Jelly: Purification and Molecular Characterization. FEBS Lett. 2002, 528, 125–129. [Google Scholar] [CrossRef]
- Alaux, C.; Dantec, C.; Parrinello, H.; Le Conte, Y. Nutrigenomics in Honey Bees: Digital Gene Expression Analysis of Pollen’s Nutritive Effects on Healthy and Varroa-Parasitized Bees. BMC Genom. 2011, 12, 496. [Google Scholar] [CrossRef]
- Basualdo, M.; Barragán, S.; Antúnez, K. Bee Bread Increases Honeybee Haemolymph Protein and Promote Better Survival despite of Causing Higher Nosema Ceranae Abundance in Honeybees. Environ. Microbiol. Rep. 2014, 6, 396–400. [Google Scholar] [CrossRef]
- Badawy, E.; ElBassiony, M.; Mahfouz, H.; Abou El-Enain, H. Effect of Some Types of Protein Nutrition on the Productivity of Honey Bee Venom. Sinai J. Appl. Sci. 2016, 5, 385–392. [Google Scholar] [CrossRef]
- Smart, M.D.; Otto, C.R.V.; Lundgren, J.G. Nutritional Status of Honey Bee (Apis mellifera L.) Workers across an Agricultural Land-Use Gradient. Sci. Rep. 2019, 9, 16252. [Google Scholar] [CrossRef]
- Musila, J.; Přidal, A. Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers. Animals 2024, 14, 512. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.G.; Lu, B.; Da Cruz, G.C.N.; Calábria, L.K.; Martins, N.F.; Togawa, R.; Espindola, F.S.; Yates, J.R.; Cunha, R.B.; De Sousa, M.V. Worker Honeybee Brain Proteome. J. Proteome Res. 2012, 11, 1485–1493. [Google Scholar] [CrossRef]
- Migdal, P.; Bieńkowski, P.; Cebrat, M.; Berbeć, E.; Plotnik, M.; Murawska, A.; Sobkiewicz, P.; Łaszkiewicz, A.; Latarowski, K. Exposure to a 900 MHz Electromagnetic Field Induces a Response of the Honey Bee Organism on the Level of Enzyme Activity and the Expression of Stress-Related Genes. PLoS ONE 2023, 18, e0285522. [Google Scholar] [CrossRef]
- Aronstein, K.A.; Saldivar, E.; Vega, R.; Westmiller, S.; Douglas, A.E. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera. Insects 2012, 3, 601–615. [Google Scholar] [CrossRef]
- Strachecka, A.; Borsuk, G.; Olszewski, K.; Paleolog, J.; Gagoś, M.; Chobotow, J.; Nawrocka, A.; Gryzińska, M.; Bajda, M. The Effect of Amphotericin B on the Lifespan, Body-Surface Protein Concentrations, and DNA Methylation Levels of Honey Bees (Apis mellifera). J. Apic. Sci. 2012, 56, 107–113. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme Q10 Treatments Influence the Lifespan and Key Biochemical Resistance Systems in the Honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef]
- Zibaee, A.; Zibaee, I.; Jalali Sendi, J. A Juvenile Hormone Analog, Pyriproxifen, Affects Some Biochemical Components in the Hemolymph and Fat Bodies of Eurygaster Integriceps Puton (Hemiptera: Scutelleridae). Pestic. Biochem. Physiol. 2011, 100, 289–298. [Google Scholar] [CrossRef]
- Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef]
- Murawska, A.; Berbeć, E.; Latarowski, K.; Roman, A.; Migdał, P. Semi-Field Studies on Biochemical Markers of Honey Bee Workers (Apis mellifera) after Exposure to Pesticides and Their Mixtures. PLoS ONE 2025, 20, e0309567. [Google Scholar] [CrossRef] [PubMed]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Cannabis Extract Has a Positive–Immunostimulating Effect through Proteolytic System and Metabolic Compounds of Honey Bee (Apis mellifera) Workers. Animals 2021, 11, 2190. [Google Scholar] [CrossRef]
- Schulz, M.; Łoś, A.; Grzybek, M.; Ścibior, R.; Strachecka, A. Piperine as a New Natural Supplement with Beneficial Effects on the Life-Span and Defence System of Honeybees. J. Agric. Sci. 2019, 157, 140–149. [Google Scholar] [CrossRef]
- Migdał, P.; Murawska, A.; Berbeć, E.; Zarębski, K.; Ratajczak, N.; Roman, A.; Latarowski, K. Biochemical Indicators and Mortality in Honey Bee (Apis mellifera) Workers after Oral Exposure to Plant Protection Products and Their Mixtures. Agriculture 2024, 14, 5. [Google Scholar] [CrossRef]
- Sokół, R. Selected Hemolymphatic Biochemical Indices in the Course of Varroa Jacobsoni Invasion in Bees (II Aspartic and Alanine Transaminase Activity in the Hemolymph of the Brood, Workers and Drones). Acta Acad. Agric. Tech. Olst. 1996, 24, 113–125. [Google Scholar]
- Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Honey Bee Proteolytic System and Behavior Parameters under the Influence of an Electric Field at 50 Hz and Variable Intensities for a Long Exposure Time. Animals 2021, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.E.; Souza, A.d.O.; Tibério, G.J.; Alberici, L.C.; Hartfelder, K. Differential Expression of Antioxidant System Genes in Honey Bee (Apis mellifera L.) Caste Development Mitigates ROS-Mediated Oxidative Damage in Queen Larvae. Genet. Mol. Biol. 2020, 43, e20200173. [Google Scholar] [CrossRef]
- Nicewicz, Ł.; Nicewicz, A.W.; Kafel, A.; Nakonieczny, M. Set of Stress Biomarkers as a Practical Tool in the Assessment of Multistress Effect Using Honeybees from Urban and Rural Areas as a Model Organism: A Pilot Study. Environ. Sci. Pollut. Res. 2021, 28, 9084–9096. [Google Scholar] [CrossRef]
- Birch-Machin, M.A.; Bowman, A. Oxidative Stress and Ageing. Br. J. Dermatol. 2016, 175, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Kodrík, D. Antioxidant Enzymes in Spodoptera Littoralis (Boisduval): Are They Enhanced to Protect Gut Tissues during Oxidative Stress? J. Insect Physiol. 2006, 52, 11–20. [Google Scholar] [CrossRef]
- Sandmann, G. Antioxidant Protection from UV-and Light-Stress Related to Carotenoid Structures. Antioxidants 2019, 8, 219. [Google Scholar] [CrossRef]
- Sagona, S.; Tafi, E.; Coppola, F.; Nanetti, A.; Boni, C.B.; Orlando, C.; Palego, L.; Betti, L.; Giannaccini, G.; Felicioli, A. Oxalic Acid Treatment: Short-Term Effects on Enzyme Activities, Vitellogenin Content, and Residual Oxalic Acid Content in House Bees, Apis mellifera L. Insects 2024, 15, 409. [Google Scholar] [CrossRef]
- Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects 2020, 11, 713. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Miszczak, A.; Gancarz, M.; Strachecka, A. Antioxidation Defenses of Apis mellifera Queens and Workers Respond to Imidacloprid in Different Age-Dependent Ways: Old Queens Are Resistant, Foragers Are Not. Animals 2021, 11, 1246. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Impressive Impact of Hemp Extract on Antioxidant System in Honey Bee (Apis mellifera) Organism. Antioxidants 2022, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Dziechciarz, P.; Strachecka, A.; Borsuk, G.; Olszewski, K. Effect of Rearing in Small-Cell Combs on Activities of Catalase and Superoxide Dismutase and Total Antioxidant Capacity in the Hemolymph of Apis mellifera Workers. Antioxidants 2023, 12, 709. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Hsieh, Y.S. Oxidative Stress Decreases in the Trophocytes and Fat Cells of Worker Honeybees during Aging. Biogerontology 2014, 15, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Akyol, E.; Selamoğlu, Z.; Gülhan, M.F. Determination of Some Biochemical Parameters of Worker Honeybees (Apis mellifera L.) Belonging to Different Age Groups. Turk. J. Zool. 2015, 39, 995–997. [Google Scholar] [CrossRef]
- Bryś, M.S.; Olszewski, K.; Bartoń, M.; Strachecka, A. Changes in the Activities of Antioxidant Enzymes in the Fat Body and Hemolymph of Apis mellifera L. Due to Pollen Monodiets. Antioxidants 2025, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Ischebeck, T. Lipids in Pollen—They Are Different. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 1315–1328. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Composition and Functionality of Bee Pollen: A Review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Somerville, D.C. Nutritional Value of Bee Collected Pollens; Rural Industries Research and Development Corporation: Kingston, Australia, 2001; 166p. [Google Scholar]
- Bryś, M.S.; Skowronek, P.; Strachecka, A. Pollen Diet—Properties and Impact on a Bee Colony. Insects 2021, 12, 798. [Google Scholar] [CrossRef]
- Todd, F.E.; Bretiierick, O. The Composition of Pollens. J of Econom Entomol. 1942, 35, 312–317. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H.; Buchmann, S.L. What Governs Protein Content of Pollen: Pollinator Preferences, Pollen-Pistil Interac- Tions, or Phylogeny? Ecol. Monogr. 2000, 70, 617–643. [Google Scholar]
- Vaudo, A.D.; Tooker, J.F.; Patch, H.M.; Biddinger, D.J.; Coccia, M.; Crone, M.K.; Fiely, M.; Francis, J.S.; Hines, H.M.; Hodges, M.; et al. Pollen Protein: Lipid Macronutrient Ratios May Guide Broad Patterns of Bee Species Floral Preferences. Insects 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- DeGrandi-Hoffman, G.; Chen, Y.; Huang, E.; Huang, M.H. The Effect of Diet on Protein Concentration, Hypopharyngeal Gland Development and Virus Load in Worker Honey Bees (Apis mellifera L.). J. Insect Physiol. 2010, 56, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Brejcha, M.; Prušáková, D.; Sábová, M.; Peska, V.; Černý, J.; Kodrík, D.; Konopová, B.; Čapková Frydrychová, R. Seasonal Changes in Ultrastructure and Gene Expression in the Fat Body of Worker Honey Bees. J. Insect Physiol. 2023, 146, 104504. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Hussain, M.M. Gut Triglyceride Production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 727–735. [Google Scholar] [CrossRef]
- Furse, S.; Koch, H.; Wright, G.A.; Stevenson, P.C. Sterol and Lipid Metabolism in Bees. Metabolomics 2023, 19, 78. [Google Scholar] [CrossRef]
- Vilić, M.; Žura Žaja, I.; Tkalec, M.; Tucak, P.; Malarić, K.; Popara, N.; Žura, N.; Pašić, S.; Gajger, I.T. Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects 2024, 15, 372. [Google Scholar] [CrossRef]
- Mackei, M.; Huber, F.; Oláh, B.; Neogrády, Z.; Mátis, G. Redox Metabolic Disruptions in the Honey Bee Brain Following Acute Exposure to the Pyrethroid Deltamethrin. Sci. Rep. 2025, 15, 28322. [Google Scholar] [CrossRef]
- Wójcik, Ł.; Chęć, M.; Skowronek, P.; Grabowski, M.; Persona, K.; Strachecka, A. Do the Different Life History Strategies of Ants and Honeybees Determine Fat Body Morphology? Arthropod Struct. Dev. 2022, 69, 101186. [Google Scholar] [CrossRef] [PubMed]
- Jaremek, M.; Olszewski, K.; Chobotow, J.; Strachecka, A. The Morphological Image of Fat Body and Tergal Gland Cells in Uninseminated Apis mellifera Queen Bees. Insects 2024, 15, 244. [Google Scholar] [CrossRef] [PubMed]
- Mayack, C.; Naug, D. Energetic Stress in the Honeybee Apis mellifera from Nosema Ceranae Infection. J. Invertebr. Pathol. 2009, 100, 185–188. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet Effects on Honeybee Immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef]
- Quinlan, G.M.; Grozinger, C.M. Honey Bee Nutritional Ecology: From Physiology to Landscapes. Adv. Insect Phys. 2023, 64, 289–345. [Google Scholar]
- Ihle, K.E.; Baker, N.A.; Amdam, G.V. Insulin-like Peptide Response to Nutritional Input in Honey Bee Workers. J. Insect Physiol. 2014, 69, 49–55. [Google Scholar] [CrossRef]
- Ara Begum, H.; Idrees, A.; Afzal, A.; Iqbal, J.; Qadir, Z.A.; Shahzad, M.F.; Li, Z.; Salah Shebl Ibrahim, S.; Alkahtani, J.; Li, J. Impact of Different Pollen Protein Diets on the Physiology of Apis mellifera L. (Hymenoptera: Apidae) Workers from Essential Plant Sources. J. King Saud. Univ. Sci. 2023, 35, 102511. [Google Scholar] [CrossRef]
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | until a specific time | [35,104] |
| Casta (foragers vs. nurses) | brain tissue | * | [105] |
| E-field at frequency 50 Hz | hemolymph | [65] | |
| E-field at frequency 900 MHz | hemolymph | [106] | |
| CBD extract | hemolymph | [34] | |
| Varroa destructor | hemolymph | [107] | |
| Treatment with bromfenvinphos | hemolymph | [73] | |
| Treatment with amphotericin-B | hemolymph | [17] | |
| on the body surface | [108] | ||
| Consumed curcumin | hemolymph | [35] | |
| Consumed caffeine | hemolymph | [36] | |
| Consumed coenzyme Q10 | hemolymph | [109] | |
| Various monofloral and polyfloral diets | hemolymph | [22,74] | |
| fat body | [22] |
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | [34,111] | |
| Varroa destructor | hemolymph | [116] | |
| E-field at frequency 50 Hz | hemolymph | [117] | |
| E-field at frequency 900 MHz | hemolymph | ~ | [106] |
| Exposure to common tansy extract (a natural substitute for synthetic pesticides) | hemolymph | [70] | |
| CBD extract | hemolymph | [34] | |
| Treatment with bromfenvinphos | hemolymph | [73] | |
| Treatment with amphotericin-B. | hemolymph | [17] | |
| Consumed curcumin | hemolymph | [35] | |
| Consumed caffeine | hemolymph | [36] | |
| Consumed coenzyme Q10 | hemolymph | [109] | |
| Imidacloprid | hemolymph | [15] |
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | [34,111] | |
| Varroa destructor | hemolymph | [116] | |
| E-field at frequency 50 Hz | hemolymph | [117] | |
| E-field at frequency 900 MHz | hemolymph | ~ | [106] |
| Treatment with bromfenvinphos | hemolymph | [73] | |
| Treatment with amphotericin-B. | hemolymph | [17] | |
| CBD extract | hemolymph | [34] | |
| Consumed curcumin | hemolymph | [35] | |
| Consumed caffeine | hemolymph | [36] | |
| Consumed coenzyme Q10 | hemolymph | [109] | |
| Imidacloprid | hemolymph | [15] |
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | [111] | |
| Varroa destructor | hemolymph | [116] | |
| E-field at frequency 50 Hz | hemolymph | [117] | |
| E-field at frequency 900 MHz | hemolymph | ~ | [106] |
| Treatment with amphotericin-B. | hemolymph | ~ | [17] |
| Treatment with bromfenvinphos | hemolymph | [73] | |
| CBD extract | hemolymph | [34] | |
| Consumed curcumin | hemolymph | [35] | |
| Consumed caffeine | hemolymph | [36] | |
| Consumed coenzyme Q10 | hemolymph | [109] | |
| Imidacloprid | hemolymph | [15] |
| Factor | Enzymes | Tissue | Trend | Literature |
|---|---|---|---|---|
| Age | CAT | fat body, | [27,128] | |
| homogenates from entire abdomens | [129,130] | |||
| hemolymph | [33] | |||
| SOD | fat body, | [128] | ||
| hemolymph | [27,33] | |||
| Varroa destructor | CAT | hemolymph, fat body | [27] | |
| SOD, GST | hemolymph, fat body | |||
| E-field at frequency 50 Hz | CAT, SOD, | hemolymph | [124] | |
| Nosema spp. | CAT, SOD, GST | homogenates from entire abdomens | [48] | |
| Consumed curcumin | CAT, SOD, GST, GPx, | hemolymph | [35] | |
| Consumed caffeine | SOD, CAT, GST, GPx, | hemolymph | [36] | |
| Treatment with bromfenvinphos | SOD, CAT, GST, GPx | hemolymph | [73] | |
| Oxalic acid treatment | CAT, GST | hemolymph | ~ | [49] |
| Consumed coenzyme Q10 | SOD, CAT, GST, GPx | hemolymph | [109] | |
| Adulteration of the wax foundation | CAT, SOD, GST, GPx | hemolymph | [19] | |
| Various monofloral diets | SOD, GST, GPx | hemolymph, fat body | [130] | |
| Urban and rural areas | GST | brain, fat body | ~ | [119] |
| Factor | Tissue | Trend | Literature |
|---|---|---|---|
| Age | hemolymph | [34] | |
| E-field at frequency 50 Hz | hemolymph | [65] | |
| Treatment with amphotericin-B. | hemolymph | [17] | |
| Varroa destructor | hemolymph | [107] | |
| Nosema spp. | hemolymph | ~ | [67] |
| CBD extract | hemolymph | [34] | |
| Consumed curcumin | hemolymph | [35] | |
| Various monofloral diets | hemolymph, fat body | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryś, M.S. Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors. Metabolites 2025, 15, 743. https://doi.org/10.3390/metabo15110743
Bryś MS. Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors. Metabolites. 2025; 15(11):743. https://doi.org/10.3390/metabo15110743
Chicago/Turabian StyleBryś, Maciej Sylwester. 2025. "Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors" Metabolites 15, no. 11: 743. https://doi.org/10.3390/metabo15110743
APA StyleBryś, M. S. (2025). Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors. Metabolites, 15(11), 743. https://doi.org/10.3390/metabo15110743

