Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Sample Size
2.2. Obtaining the Human Colostrum Supernatant Pool
2.3. Extraction and Quantification of the Colostrum Melatonin Hormone
2.4. Preparation of Polyethylene Glycol (PEG) Microspheres
2.5. Characterization of PEG Microspheres by Fluorescence Microscopy and Flow Cytometry
2.6. Release of Melatonin from Colostrum and Synthetic Adsorbed in PEG Microsphere
2.7. Obtaining Mononuclear Cells from Human Colostrum
2.8. Enteropathogenic Escherichia coli (EPEC) Strands and Cultures
2.9. Incubation of MN Phagocytes with PEG Microspheres Adsorbed with Melatonin Extracted from Colostrum and Synthetic Melatonin
2.10. Superoxide Anion Release
2.11. CuZn-Superoxide Dismutase in the Supernatant Culture of Colostrum Phagocytes
2.12. Statistical Analysis
3. Results
3.1. Characterization of PEG Microspheres
3.2. Effect of Melatonin Adsorbed to PEG Microspheres on Superoxide Anion Release
3.3. Effect of Melatonin Adsorbed to PEG Microspheres on CuZn-Superoxide Dismutase (SOD) Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted Drug Delivery: Trends and Perspectives. Curr. Drug Deliv. 2021, 18, 1435–1455. [Google Scholar] [CrossRef]
- Das, S.; Das, M.K.; Deka, T.; Singha, L.R.; Das, P. Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. In Nano Medicine and Nano Safety; Das, M.K., Pathak, Y.V., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Kalaydina, R.V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomed. 2018, 13, 4727–4745. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Phung, C.D.; Kim, J.O.; Yong, C.S.; Kim, J.R.; Yook, S.; Jeong, J.H. The impact of locally-delivered tacrolimus-releasing microspheres and polyethylene glycol-based islet surface modification on xenogeneic islet survival. J. Control. Release 2021, 336, 274–284. [Google Scholar] [CrossRef]
- Hara, C.C.P.; Honorio-França, A.C.; Fagundes, D.L.G.; Guimarâes, P.C.L.; França, E.L. Melatonin nanoparticles adsorbed to polyethylene glycol microspheres as activators of human colostrum macrophages. J. Nanomater. 2013, 2013, 973179. [Google Scholar] [CrossRef]
- França, E.L.; Honorio-França, A.C.; Fernandes, R.T.; Marins, C.M.; Pereira, C.C.; Varotti, F.P. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells. Neuroimmunomodulation 2016, 23, 27–32. [Google Scholar] [CrossRef]
- Santhanakrishnan, K.R.; Koilpillai, J.; Narayanasamy, D. PEGylation in Pharmaceutical Development: Current Status and Emerging Trends in Macromolecular and Immunotherapeutic Drugs. Cureus 2024, 16, e66669. [Google Scholar] [CrossRef] [PubMed]
- Häusler, S.; Lanzinger, E.; Sams, E.; Fazelnia, C.; Allmer, K.; Binder, C.; Reiter, R.J.; Felder, T.K. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024, 16, 1422. [Google Scholar] [CrossRef]
- Monteiro, K.K.A.C.; Shiroma, M.E.; Damous, L.L.; Simões, M.d.J.; Simões, R.d.S.; Cipolla-Neto, J.; Baracat, E.C.; Soares, J.M., Jr. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants 2024, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, G.J.M. Role of Melatonin in Viral, Bacterial and Parasitic Infections. Biomolecules 2024, 14, 356. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W. Extraintestinal Foodborne Pathogens. Annu. Rev. Food Sci. Technol. 2020, 11, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.C.; Honorio-França, A.C.; Fujimori, M.; Quental, O.B.; Pessoa, R.S.; França, E.L.; Abreu, L.C. Melatonin Action on the Activity of Phagocytes from the Colostrum of Obese Women. Medicina 2019, 55, 625. [Google Scholar] [CrossRef]
- Scott, R.A.; Elbert, D.L.; Willits, R.K. Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells. Acta Biomater. 2011, 7, 3841–3849. [Google Scholar] [CrossRef] [PubMed]
- Scherer, E.F.; Honorio-França, A.C.; Hara, C.C.P.; Reinaque, A.P.B.; Côrtes, M.A.; França, E.L. Immunomodulatory Effects of Poly(ethylene glycol) Microspheres Adsorbed with Nanofractions of Momordica charantia L. on Diabetic Human Blood Phagocytes. Sci. Adv. Mater. 2011, 3, 687–694. [Google Scholar] [CrossRef]
- Pick, E.; Mizel, D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods 1981, 46, 211–226. [Google Scholar] [CrossRef]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef]
- Guo, S.; Wang, J.; Wang, Q.I.; Wang, I.; Qin, S.; Li, W. Advances in peptide-based drug delivery systems. Heliyon 2024, 10, e26009. [Google Scholar] [CrossRef]
- Ruan, G.; Feng, S.S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 2003, 24, 5037–5044. [Google Scholar] [CrossRef]
- Jackson, N.; Ortiz, A.C.; Jerez, A.; Morales, J.; Arriagada, F. Kinetics and Mechanism of Camptothecin Release from Transferrin-Gated Mesoporous Silica Nanoparticles through a pH-Responsive Surface Linker. Pharmaceutics 2023, 15, 1590. [Google Scholar] [CrossRef]
- Cheaburu-Yilmaz, C.N.; Atmaca, K.; Yilmaz, O.; Orhan, H. Development, Characterization, and Evaluation of Potential Systemic Toxicity of a Novel Oral Melatonin Formulation. Pharmaceutics 2024, 16, 871. [Google Scholar] [CrossRef]
- Reinaque, A.P.; França, E.L.; Scherer, E.F.; Côrtes, M.A.; Souto, F.J.; Honorio-França, A.C. Natural material adsorbed onto a polymer to enhance immune function. Drug Des. Devel. Ther. 2012, 6, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S.; Song, M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 9118. [Google Scholar] [CrossRef] [PubMed]
- Damle, V.G.; Wu, K.; Arouri, D.J.; Schirhagl, R. Detecting free radicals post viral infections. Free Radic. Biol. Med. 2022, 191, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022, 12, 821535. [Google Scholar] [CrossRef]
- Vainer, A.M.; Rocha, V.S.; Juvenale, M. Melatonin and the immune system: A two-way relationship regulatory. Braz. J. Health Rev. 2021, 4, 2906–2929. [Google Scholar] [CrossRef]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.-M. Melatonin’s Impact on Anti-oxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 2014, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zeng, J.; Wang, X.; Drlica, K.; Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Nat. Acad. Sci. USA 2019, 116, 10064–10071. [Google Scholar] [CrossRef] [PubMed]
- Louis, M.B.P.; França, D.C.H.; Queiroz, A.A.; Calderon, I.M.P.; França, E.L.; Honorio-França, A.C. Melatonin Hormone Acts on Cells of Maternal Blood and Placenta from Diabetic Mothers. Front. Physiol. 2022, 12, 765928. [Google Scholar] [CrossRef]
- Pal, P.K.; Bhattacharjee, B.; Chattopadhyay, A.; Bandyopadhyay, D. Pleiotropic roles of melatonin against oxidative stress-mediated tissue injury in the gastrointestinal tract: An overview. Melatonin Res. 2019, 2, 158–184. [Google Scholar] [CrossRef]
- Barreiros, A.L.B.S.; DavidI, J.M.; David, J.P. Oxidative stress: Relations between the formation of reactive species and the organism’s defense. Quím. Nova 2006, 29, 113–123. [Google Scholar] [CrossRef]
- Poonia, A. Shiva Bioactive compounds, nutritional profile and health benefits of colostrum: A review. Food Prod. Process. Nutr. 2022, 4, 26. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, Á.L.; Sáenz de Pipaón, M.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Sakala, I.G.; Eichinger, K.M.; Petrovsky, N. Neonatal vaccine effectiveness and the role of adjuvants. Expert Rev. Clin. Immunol. 2019, 15, 869–878. [Google Scholar] [CrossRef]
- Chuffa, L.G.d.A.; Seiva, F.R.F.; Novais, A.A.; Simão, V.A.; Martín Giménez, V.M.; Manucha, W.; Zuccari, D.A.P.d.C.; Reiter, R.J. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021, 26, 3562. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Malaiappan, S.S.R. The Development and Evaluation of Melatonin-Loaded, Calcium Oxide Nanoparticle-Based Neem and Clove Extract: An In Vitro Study. Cureus 2023, 15, e46293. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Odrobińska, J.; Skonieczna, M.; Neugebauer, D. PEG Graft Polymer Carriers of Antioxidants: In Vitro Evaluation for Transdermal Delivery. Pharmaceutics 2020, 12, 1178. [Google Scholar] [CrossRef]
Microsphere | Size (µm) | Fluorescence Intensity (Mean ± sd) |
---|---|---|
BD | 6 | 95.1 ± 9.3 |
PEG | 5.1 | 80.3 ± 10.7 |
PEG + MLT-C | 6.8 | 107.2 ± 12.9 |
PEG + MLT-S | 5.4 | 84.1 ± 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.G.; Luz, V.F.; Nunes, V.L.; Verzoto, A.B.M.; Cotrim, A.C.d.M.; dos Santos, W.B.; França, E.L.; Honorio-França, A.C. Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes. Metabolites 2025, 15, 57. https://doi.org/10.3390/metabo15010057
Silva CG, Luz VF, Nunes VL, Verzoto ABM, Cotrim ACdM, dos Santos WB, França EL, Honorio-França AC. Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes. Metabolites. 2025; 15(1):57. https://doi.org/10.3390/metabo15010057
Chicago/Turabian StyleSilva, Caroline G., Viviane F. Luz, Victor L. Nunes, Ana B. M. Verzoto, Aron C. de M. Cotrim, Wagner B. dos Santos, Eduardo L. França, and Adenilda C. Honorio-França. 2025. "Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes" Metabolites 15, no. 1: 57. https://doi.org/10.3390/metabo15010057
APA StyleSilva, C. G., Luz, V. F., Nunes, V. L., Verzoto, A. B. M., Cotrim, A. C. d. M., dos Santos, W. B., França, E. L., & Honorio-França, A. C. (2025). Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes. Metabolites, 15(1), 57. https://doi.org/10.3390/metabo15010057