Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultures
2.2. Experimental Design
2.3. Microbial Diversity Analysis Method
2.4. Metabolomics and Statistical Analyses
2.5. Statistical Analysis
3. Results
3.1. Data Preprocessing
3.2. Alpha Diversity Analysis
3.3. The Taxonomic Composition Analysis
3.4. 16S-Metabolomic Association Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, L.; Guan, D.; Chen, Y.; Dai, J.; Ding, W.; Peart, M.R.; Zhang, C. Distribution and availability of heavy metals in soils near electroplating factories. Environ. Sci. Pollut. Res. 2019, 26, 22596–22610. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Su, T.; Zhu, S.; Chen, Y.; Yu, Y.; Xie, X.; Yang, J.; Huo, M.; Bian, D. Stepwise extraction of Fe, Al, Ca, and Zn: A green route to recycle raw electroplating sludge. J. Environ. Manag. 2021, 300, 113700. [Google Scholar] [CrossRef] [PubMed]
- Martín-Lara, M.; Blázquez, G.; Trujillo, M.; Pérez, A.; Calero, M. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. J. Clean. Prod. 2014, 81, 120–129. [Google Scholar] [CrossRef]
- Li, T.; Wei, G.; Liu, H.; Gong, Y.; Zhao, H.; Wang, Y.; Wang, J. Comparative study of electroplating sludge reutilization in China: Environmental and economic performances. Environ. Sci. Pollut. Res. 2023, 30, 106598–106610. [Google Scholar] [CrossRef] [PubMed]
- Beckers, B.; Op De Beeck, M.; Thijs, S.; Truyens, S.; Weyens, N.; Boerjan, W.; Vangronsveld, J. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 2016, 7, 650. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Hua, W.; Jianhang, H. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals. J. Hazard. Mater. 2021, 417, 126020. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hwang, J.-Y.; Huang, C.; Shi, Y. Electroplating Wastewater Treatment in China. In Materials Engineering—From Ideas to Practice: An EPD Symposium in Honor of Jiann-Yang Hwang; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- You, S.-H.; Zhang, X.-H.; Liu, J.; Zhu, Y.-N.; Gu, C. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environ. Technol. 2014, 35, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Morsy, R.M.; Hewehy, M.A.; Razek, T.M.; Hamid, M.M. Treatment of industrial electroplating wastewater for metals removal via electrocoagulation continous flow reactors. Water Pract. Technol. 2022, 17, 555–566. [Google Scholar] [CrossRef]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Shackira, A.; Jazeel, K.; Puthur, J.T. Phycoremediation and phytoremediation: Promising tools of green remediation. In Sustainable Environmental Clean-Up; Elsevier: Amsterdam, The Netherlands, 2021; pp. 273–293. [Google Scholar]
- Nugroho, A.P.; Butar ES, B.; Priantoro, E.A.; Sriwuryandari, L.; Pratiwi, Z.B.; Sembiring, T. Phytoremediation of electroplating wastewater by vetiver grass (Chrysopogon zizanoides L.). Sci. Rep. 2021, 11, 14482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Liu, J.; Huang, H.-T.; Chen, J.; Zhu, Y.-N.; Wang, D.-Q. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 2007, 67, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, X.-H.; Chen, J.; Liang, L.; Liu, L.-H. Phytoremediation potential of Leersia hexandra Swartz of copper contaminated soil and its enhancement by using agronomic management practices. Ecol. Eng. 2019, 127, 561–566. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Jiang, P.; Liu, J.; You, S.; Lv, Y. Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz. J. Plant Interact. 2022, 17, 766–778. [Google Scholar] [CrossRef]
- Negi, Y.K.; Prabha, D.; Garg, S.K.; Kumar, J. Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth-promoting activities. J. Plant Growth Regul. 2011, 30, 128–143. [Google Scholar] [CrossRef]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking plant secondary metabolites and plant microbiomes: A review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Plaszkó, T.; Szűcs, Z.; Cziáky, Z.; Ács-Szabó, L.; Csoma, H.; Géczi, L.; Vasas, G.; Gonda, S. Correlations between the metabolome and the endophytic fungal metagenome suggests importance of various metabolite classes in community assembly in horseradish (Armoracia rusticana, Brassicaceae) roots. Front. Plant Sci. 2022, 13, 921008. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.; Khan, M.S. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 2017, 185, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Qi, X.; Zeng, X.-a.; Lu, Y.; Zhou, J.; Cui, K.; Zhang, L. A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. J. Hazard. Mater. 2021, 403, 123824. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Ji, S.; Ping, J.; Cui, D. Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends Anal. Chem. 2021, 143, 116402. [Google Scholar] [CrossRef]
- Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-Oates, J.; António, C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrom. Rev. 2016, 35, 620–649. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, M.; Rizwan, M.S.; Mushtaq, M.A.; Ashraf, M.; Shahzad, S.M.; Yousaf, B.; Saeed, D.A.; Nawaz, M.A.; Mehmood, S.; Tu, S. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. J. Environ. Manag. 2016, 183, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Lin, H.; Xu, H.; Liu, Z.; Wang, Y.; Gan, S. The Enrichment Characteristics of Leersia hexandra Swartz to Ni in Water and its Photosynthetic Physiological Response. Technol. Water Treat. 2022, 48, 92–97. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, X.; Liu, J.; Ding, Z.; Dai, D.; Chen, S.; Yu, G. Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz. Sustainability 2023, 15, 6244. [Google Scholar] [CrossRef]
- Guo, M.; Wu, F.; Hao, G.; Qi, Q.; Li, R.; Li, N.; Wei, L.; Chai, T. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 2017, 8, 354. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef] [PubMed]
- Visioli, G.; D’Egidio, S.; Vamerali, T.; Mattarozzi, M.; Sanangelantoni, A.M. Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 2014, 117, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Lata, C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front. Plant Sci. 2018, 9, 452. [Google Scholar] [CrossRef]
- Fakhar, A.; Gul, B.; Gurmani, A.R.; Khan, S.M.; Ali, S.; Sultan, T.; Chaudhary, H.J.; Rafique, M.; Rizwan, M. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1868–1914. [Google Scholar] [CrossRef]
- Rajkumar, M.; Bruno, L.B.; Banu, J.R. Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Crit. Rev. Environ. Sci. Technol. 2017, 47, 372–407. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Liu, J.; Yang, S.; Ruan, B.; Rehman, S.; Liu, L.; Zhu, N. The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress. Chemosphere 2020, 240, 124851. [Google Scholar] [CrossRef]
- Majewska, M.; Wdowiak-Wrobel, S.; Marek-Kozaczuk, M.; Nowak, A.; Tyśkiewicz, R. Cadmium-resistant Chryseobacterium sp. DEMBc1 strain: Characteristics and potential to assist phytoremediation and promote plant growth. Environ. Sci. Pollut. Res. 2022, 29, 83567–83579. [Google Scholar] [CrossRef] [PubMed]
- Chunli, W.; Xiaotong, S.; Yuanhui, C.; Yu, Z.; Mingtang, L. Comparative metabolomic analysis reveals Ni (II) stress response mechanism of Comamonas testosteroni ZG2. Ecotoxicol. Environ. Saf. 2023, 263, 115244. [Google Scholar]
- Mishra, S.; Sharma, S. Metabolomic insights into endophyte-derived bioactive compounds. Front. Microbiol. 2022, 13, 835931. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Nisar, M.; Ali, H.; Hazrat, A.; Hayat, K.; Keerio, A.A.; Ihsan, M.; Laiq, M.; Ullah, S.; Fahad, S.; et al. Drought tolerance improvement in plants: An endophytic bacterial approach. Appl. Microbiol. Biotechnol. 2019, 103, 7385–7397. [Google Scholar] [CrossRef] [PubMed]
- Durand, A.; Leglize, P.; Benizri, E. Are endophytes essential partners for plants and what are the prospects for metal phytoremediation? Plant Soil 2021, 460, 1–30. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Matteini, P.; Goti, A.; Tattini, M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 2007, 174, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; Bashandy, S.R.; Bagy, M.K.; El-enany, A.-W.E. Rhizobium tibeticum activated with a mixture of flavonoids alleviates nickel toxicity in symbiosis with fenugreek (Trigonella foenum graecum L.). Ecotoxicology 2014, 23, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Rossi, S.; Huang, B. Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 2022, 11, 199. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Total Tags | OTUs | α Diversity | |||
---|---|---|---|---|---|---|
Sobs | Shannon | Simpson | Chao1 | |||
CK-1 | 116,003 | 384 | 384 | 4.56 | 0.92 | 442.40 |
CK-2 | 106,264 | 378 | 384 | 4.56 | 0.92 | 442.40 |
CK-3 | 101,121 | 348 | 348 | 4.46 | 0.91 | 396.31 |
T-1 | 103,881 | 329 | 329 | 3.21 | 0.81 | 396.78 |
T-2 | 114,571 | 362 | 362 | 3.14 | 0.80 | 498.88 |
T-3 | 119,887 | 374 | 374 | 3.86 | 0.87 | 465.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yu, G.; Qiu, H.; Jiang, P.; Zhong, X.; Liu, J. Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites. Metabolites 2024, 14, 231. https://doi.org/10.3390/metabo14040231
Chen M, Yu G, Qiu H, Jiang P, Zhong X, Liu J. Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites. Metabolites. 2024; 14(4):231. https://doi.org/10.3390/metabo14040231
Chicago/Turabian StyleChen, Mouyixing, Guo Yu, Hui Qiu, Pingping Jiang, Xuemei Zhong, and Jie Liu. 2024. "Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites" Metabolites 14, no. 4: 231. https://doi.org/10.3390/metabo14040231
APA StyleChen, M., Yu, G., Qiu, H., Jiang, P., Zhong, X., & Liu, J. (2024). Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites. Metabolites, 14(4), 231. https://doi.org/10.3390/metabo14040231