Exploring Metabolic Characteristics in Different Geographical Locations and Yields of Nicotiana tabacum L. Using Gas Chromatography–Mass Spectrometry Pseudotargeted Metabolomics Combined with Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Metabolite Extraction and Derivatization
2.4. GC–MS Pseudotargeted Metabolomics
2.5. Statistical Analysis
3. Results
3.1. Metabolite Identification in Tobacco Leaves
3.2. Interaction Effect of Geographical Location and Yield on Metabolites
3.3. Metabolic Profiling in Different Geographical Locations
3.4. Characteristic Metabolites and Their Metabolic Pathways at Different Yields
4. Discussion
4.1. Metabolite Identification and Method Evaluation
4.2. Characteristic Metabolites of Different Geographical Locations and Their Effects on Flavour Type
4.3. Characteristic Metabolites and Metabolic Pathways of Different Yields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.T.; Zhang, Y.; Du, Y.Y.; Chen, S.Y.; Tang, H.R. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J. Proteome Res. 2011, 10, 1904–1914. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.Y.; Guo, J.Z.; Xia, Q.L.; Zhao, G.; Zhou, H.N.; Xie, F.W. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J. Agric. Food Chem. 2013, 61, 2597–2605. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Li, L.L.; Zhao, Y.N.; Zhao, C.X.; Chen, X.; Liu, P.P.; Zhou, H.N.; Zhang, J.J.; Hu, C.X.; Chen, A.G.; et al. Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Anal. Bioanal. Chem. 2018, 410, 839–851. [Google Scholar] [CrossRef]
- Chang, W.; Zhao, H.N.; Yu, S.Z.; Yu, J.; Cai, K.; Sun, W.; Liu, X.M.; Li, X.D.; Yu, M.N.; Ali, S.; et al. Comparative transcriptome and metabolomic profiling reveal the complex mechanisms underlying the developmental dynamics of tobacco leaves. Genomics 2020, 112, 4009–4022. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.Y.; Bao, F.; Fan, X.R.; Han, S.; Zheng, W.H.; Sun, L.L.; Yan, N.; Du, H.; Zhao, H.Y.; Yang, Z.G. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J. Sep. Sci. 2020, 43, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Y.; Hu, C.X.; Zeng, J.; Zhao, Y.N.; Zhang, J.J.; Chang, Y.W.; Li, L.L.; Zhao, C.X.; Lu, X.; Xu, G.W. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics 2014, 10, 805–815. [Google Scholar] [CrossRef]
- Yang, C.; Wu, W.; Wu, S.C.; Liu, H.B.; Peng, Q. Aroma types of flue-cured tobacco in China: Spatial distribution and association with climatic factors. Theor. Appl. Clim. 2014, 115, 541–549. [Google Scholar] [CrossRef]
- Aguirre, M.; Kiegle, E.; Leo, G.; Ezquer, I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018, 31, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Gibson, K.; Park, J.S.; Nagai, Y.; Hwang, S.K.; Cho, Y.C.; Roh, K.H.; Lee, S.M.; Kim, D.H.; Choi, S.B.; Ito, H.; et al. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Sci. 2011, 181, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Ambavaram, M.M.R.; Basu, S.; Krishnan, A.; Ramegowda, V.; Batlang, U.; Rahman, L.; Baisakh, N.; Pereira, A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat. Commun. 2014, 5, 5302. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.Y.; Gao, X.; Peng, J.J. The allometry and dynamics of carbohydrate and nitrogen in vegetative organs and the relationship to cotton yield. J. Plant Nutr. 2021, 45, 3080–3093. [Google Scholar] [CrossRef]
- Djajadi, D. Tobacco diversity in Indonesia. J. Biol. Res. 2015, 20, 27–32. [Google Scholar] [CrossRef]
- Reichert, J.M.; Pellegrini, A.; Rodrigues, M.F. Tobacco growth, yield and quality affected by soil constraints on steeplands. Ind. Crops Prod. 2019, 128, 512–526. [Google Scholar] [CrossRef]
- Shen, S.Q.; Zhan, C.S.; Yang, C.K.; Fernie, A.R.; Luo, J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol. Plant 2023, 16, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.J.; Wang, L.C.; Xuan, Q.H.; Zhao, X.J.; Liu, X.Y.; Shi, X.Z.; Xu, G.W. Pseudotargeted method based on parallel column two-dimensional liquid chromatography-mass spectrometry for broad coverage of metabolome and lipidome. Anal. Chem. 2020, 92, 6043–6050. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, L.N.; Shi, X.Z.; Xu, G.W. New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. Trends Anal. Chem. 2019, 121, 115665. [Google Scholar] [CrossRef]
- Zheng, F.J.; Zhao, X.J.; Zeng, Z.D.; Wang, L.C.; Lv, W.J.; Wang, Q.Q.; Xu, G.W. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nat. Protoc. 2020, 15, 2519–2537. [Google Scholar] [CrossRef]
- Koh, Y.; Pasikanti, K.K.; Yap, C.; Eric, C. Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J. Chromatogr. A 2010, 1217, 8308–8316. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, Q.; Li, Y.L.; Ye, G.Z.; Lu, X.; Lin, X.H.; Xu, G.W. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. J. Chromatogr. A 2012, 1255, 228–236. [Google Scholar] [CrossRef]
- Cai, K.; Zhao, Y.P.; Kang, Z.J.; Wang, S.L.; Wright, A.L.; Jiang, X.J. Environmental pseudotargeted metabolomics: A high throughput and wide coverage method for metabolic profiling of 1000-year paddy soil chronosequences. Sci. Total Environ. 2023, 858, 159978. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Zhao, C.X.; Lu, X.; Zhou, H.N.; Li, Y.L.; Zhou, J.; Chang, Y.W.; Zhang, J.J.; Jin, L.F.; Lin, F.C.; et al. Investigation of the relationship between the metabolic profile of tobacco leaves in different planting regions and climate factors using a pseudotargeted method based on gas chromatography/mass spectrometry. J. Proteome Res. 2013, 12, 5072–5083. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Zhao, C.X.; Li, Y.L.; Chang, Y.W.; Zhang, J.J.; Zeng, Z.D.; Lu, X.; Xu, G.W. Study of metabolite differences of flue-cured tobacco from different regions using a pseudotargeted gas chromatography with mass spectrometry selected-ion monitoring method. J. Sep. Sci. 2014, 37, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.C.M.; Caldana, C.; Wolf, L.D.; de Abreu, L.G.F. The importance of experimental design, quality assurance, and control in plant metabolomics experiments. In Plant Metabolomics; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1778, pp. 3–17. [Google Scholar]
- Roessner, U.; Wagner, C.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J. 2000, 23, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Phélippé, M.; Coat, R.; Bras, C.L.; Perrochaud, L.; Peyretaillade, E.; Kucma, D.; Arhaliass, A.; Thouand, G.; Cogne, G.; Gonçalves, O. Characterization of an easy-to-use method for the routine analysis of thecentral metabolism using an affordable low-resolution GC–MS system: Application to Arthrospira platensis. Anal. Bioanal. Chem. 2018, 410, 1341–1361. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Zhang, X.M.; Song, S.Q.; Han, T.; Karangwa, E. Identification of aroma types and their characteristic volatile compounds of Chinese faint-scent cigarettes based on descriptive sensory analysis and GC–MS and partial least squares regression. Eur. Food Res. Technol. 2016, 242, 869–880. [Google Scholar] [CrossRef]
- Qin, S.; Wang, Z.Y.; Shi, J.X. Quality characteristics of tobacco leaves with different aromatic styles from Guizhou Province, China. Agric. Sci. China 2007, 6, 220–226. [Google Scholar]
- Banožić, M.; Jokić, S.; Ačkar, Đ.; Blažić, M.; Subaric, D. Carbohydrates—Key players in tobacco aroma formation and quality determination. Molecules 2020, 25, 1734. [Google Scholar] [CrossRef]
- Liu, A.; Yuan, K.L.; Xu, H.Q.; Zhang, Y.G.; Tian, J.K.; Li, Q.; Zhu, W.; Ye, H. Proteomic and metabolomic revealed differences in the distribution and synthesis mechanism of aroma precursors in yunyan 87 tobacco leaf, stem, and root at the seedling stage. ACS Omega 2022, 7, 33295–33306. [Google Scholar] [CrossRef]
- Purkis, S.W.; Mueller, C.; Intorp, M. The fate of ingredients in and impact on cigarette smoke. Food Chem. Toxicol. 2011, 49, 3238–3248. [Google Scholar] [CrossRef]
- Yin, F.; Karangwa, E.; Song, S.; Duhoranimana, E.; Lin, S.; Cui, H.; Zhang, X.M. Contribution of tobacco composition compounds to characteristic aroma of Chinese faint-scent cigarettes through chromatography analysis and partial least squares regression. J. Chromatogr. B 2019, 1105, 217–227. [Google Scholar] [CrossRef]
- Yun, F.; Liu, G.S.; Shi, H.Z.; Yang, X.W. Interactive effects of light intensity and nitrogen supply on the neutral volatile aroma components and organic acids of flue-cured tobacco. J. Food Agric. Environ. 2013, 11, 1187–1194. [Google Scholar]
- Xiang, G.; Yang, H.Y.; Yang, L.; Zhang, X.; Cao, Q.E.; Miao, M.M. Multivariate statistical analysis of tobacco of different origin, grade and variety according to polyphenols and organic acids. Microchem. J. 2010, 95, 198–206. [Google Scholar] [CrossRef]
- Tsaballa, A.; Sarrou, E.; Xanthopoulou, A.; Tsaliki, E.; Kissoudis, C.; Karagianni, E.; Michailidis, M.; Martens, S.; Sperdouli, E.; Hilioti, Z.; et al. Comprehensive approaches reveal key transcripts and metabolites highlighting metabolic diversity among three oriental tobacco varieties. Ind. Crops Prod. 2020, 143, 111933. [Google Scholar] [CrossRef]
- Chen, J.; He, X.; Zhang, X.Y.; Chen, Y.; Zhao, L.; Su, J.E.; Qu, S.B.; Ji, X.W.; Wang, T.; Li, Z.J.; et al. The applicability of different tobacco types to heated tobacco products. Ind. Crops Prod. 2021, 168, 113579. [Google Scholar] [CrossRef]
- Nunes-Nesi, A.; Fernie, A.R.; Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 2010, 3, 973–996. [Google Scholar] [CrossRef]
- Rossi, M.; Bermudez, L.; Carrari, F. Crop yield: Challenges from a metabolic perspective. Curr. Opin. Plant Biol. 2015, 25, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, R.; Wang, X.; Liang, W.; Liao, J.; Huang, X.; Cai, Z.; Liu, D.; Huang, L.; Wei, X. The starch-sugar interconversion mechanism during bulb development of Cardiocrinum giganteum (wall.) makino revealed by transcriptome and metabolite analysis. Ind. Crops Prod. 2022, 187, 1–11. [Google Scholar] [CrossRef]
- Kim, J.I.; Hidalgo-Shrestha, C.; Bonawitz, N.D.; Franke, R.B.; Chapple, C. Spatio-temporal control of phenylpropanoid biosynthesis by inducible complementation of a cinnamate 4-hydroxylase mutant. J. Exp. Bot. 2021, 72, 3061–3073. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q. Lignification: Flexibility, biosynthesis and regulation. Trends Plant Sci. 2016, 21, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.S.; Iqbal, M.; Lukatkin, A.S.; Pereira, E.; Duarte, A.C.; Ahmad, I. Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants. Environ. Sci. Pollut. Res. 2015, 22, 4099–4121. [Google Scholar] [CrossRef]
- Zhang, X.B.; Liu, C.J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol. Plant 2015, 8, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Fukushima, A.; Redestig, H.; Saito, K. Metabolomic approaches toward understanding nitrogen metabolism in plants. J. Exp. Bot. 2011, 62, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Galili, G.; Amir, R.; Fernie, A.R. The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 2016, 67, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Zhao, J.Y.; Zhao, C.X.; Zhou, H.N.; Li, Y.L.; Zhang, J.J.; Li, L.L.; Hu, C.X.; Li, W.Z.; Peng, X.J.; et al. A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Sci. Rep. 2015, 5, 16346. [Google Scholar] [CrossRef] [PubMed]
- Nölke, G.; Chudobova, I.; Houdelet, M.; Volke, D.; Lusso, M.; Frederick, J.; Kudithipudi, C.; Shen, Y.X.; Warek, U.; Strickland, J.A.; et al. Impact of nicotine pathway downregulation on polyamine biosynthesis and leaf ripening in tobacco. Plant Direct 2021, 5, e00329. [Google Scholar] [CrossRef]
- Nölke, G.; Volke, D.; Chudobová, I.; Houdelet, M.; Lusso, M.; Frederick, J.; Adams, A.; Kudithipudi, C.; Warek, U.; Strickland, J.A.; et al. Polyamines delay leaf maturation in low-alkaloid tobacco varieties. Plant Direct 2018, 2, e00077. [Google Scholar] [CrossRef]
- Bayona, L.M.; Leeuwen, G.V.; Erol, O.; Swierts, T.; Ent, E.V.D.; de Voogd, N.J.; Choi, Y.H. Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega 2020, 5, 12398–12408. [Google Scholar] [CrossRef]
- Xu, W.Q.; Cheng, Y.L.; Guo, Y.H.; Yao, W.R.; Qian, H. Effects of geographical location and environmental factors on metabolite content and immune activity of Echinacea purpurea in China based on metabolomics analysis. Ind. Crops Prod. 2022, 189, 115782. [Google Scholar] [CrossRef]
- Benmahieddine, A.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; Zerey-Belaskri, A.E.; Gismondi, A.; Marco, G.D.; Canini, A.; Bechlaghem, N.; Bekkara, F.A.; Djebli, N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. Biochem. Syst. Ecol. 2021, 95, 104231. [Google Scholar] [CrossRef]
Compounds | Contribution to Geographical Location Factor | Compounds | Contribution to Yield Factor |
---|---|---|---|
Threitol | 0.159 | Phenylalanine | 0.189 |
6C sugar acid | 0.156 | Pyroglutamic acid | 0.184 |
L-rhamnose | 0.154 | Phytol | 0.179 |
Arabitol | 0.153 | Threonine | 0.171 |
Ribonic acid | 0.152 | Glutamine | 0.170 |
Beta-sitosterol | 0.151 | Arabinose | 0.169 |
Erythritol | 0.150 | Nicotinic acid | 0.165 |
Maltose | 0.149 | Linoleic acid | 0.158 |
Oleic acid | 0.148 | Methionine | 0.157 |
Salidroside | 0.145 | Pipecolinic acid | 0.148 |
5C sugar acid | 0.144 | Ethanolamine | 0.147 |
Gluconic acid | 0.141 | Shikimic acid | 0.146 |
Mannitol | 0.139 | Sucrose | 0.145 |
L-xylonic acid-1,4-lactone | 0.138 | Asparagine | 0.144 |
Xylose | 0.135 | Tryptophan | 0.144 |
Tocopherol | 0.134 | Aspartic acid | 0.143 |
myo-Inositol-1-phosphate | 0.130 | Gluconic acid | 0.143 |
Sorbitol | 0.129 | Tyrosine | 0.141 |
Caffeic acid | 0.127 | Tyramine | 0.140 |
Cellobiose | 0.126 | Citric acid | 0.136 |
Glycerophosphoglycerol | 0.125 | Lysine | 0.132 |
Glyceric acid | −0.125 | Malic acid | 0.130 |
Monomethyl phosphate | −0.124 | 5-Hydroxytryptophan | 0.129 |
L-Arabonic acid-1,4-lactone | 0.124 | Proline | 0.128 |
Fumaric acid | 0.123 | Xylitol | 0.121 |
Ascorbic acid | −0.122 | Tartaric acid | 0.120 |
Sitosterol | 0.121 | ||
Salicylic acid | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Y.; Chen, W.; Qiu, X.; Qin, S.; Gao, W.; Li, C.; Quan, W.; Cai, K. Exploring Metabolic Characteristics in Different Geographical Locations and Yields of Nicotiana tabacum L. Using Gas Chromatography–Mass Spectrometry Pseudotargeted Metabolomics Combined with Chemometrics. Metabolites 2024, 14, 176. https://doi.org/10.3390/metabo14040176
Jing Y, Chen W, Qiu X, Qin S, Gao W, Li C, Quan W, Cai K. Exploring Metabolic Characteristics in Different Geographical Locations and Yields of Nicotiana tabacum L. Using Gas Chromatography–Mass Spectrometry Pseudotargeted Metabolomics Combined with Chemometrics. Metabolites. 2024; 14(4):176. https://doi.org/10.3390/metabo14040176
Chicago/Turabian StyleJing, Yuan, Wei Chen, Xuebai Qiu, Shuyue Qin, Weichang Gao, Chaochan Li, Wenxuan Quan, and Kai Cai. 2024. "Exploring Metabolic Characteristics in Different Geographical Locations and Yields of Nicotiana tabacum L. Using Gas Chromatography–Mass Spectrometry Pseudotargeted Metabolomics Combined with Chemometrics" Metabolites 14, no. 4: 176. https://doi.org/10.3390/metabo14040176
APA StyleJing, Y., Chen, W., Qiu, X., Qin, S., Gao, W., Li, C., Quan, W., & Cai, K. (2024). Exploring Metabolic Characteristics in Different Geographical Locations and Yields of Nicotiana tabacum L. Using Gas Chromatography–Mass Spectrometry Pseudotargeted Metabolomics Combined with Chemometrics. Metabolites, 14(4), 176. https://doi.org/10.3390/metabo14040176